
CS356 Object-Oriented Design and Programming
http://cs356.yusun.io
October 3, 2014

Yu Sun, Ph.D.
http://yusun.io
yusun@csupomona.edu

Java OOP Principles

Announcements

¿  Quiz 1 on Monday (10/6)
¿  GitHub Username!

Recommended Reading

¿  Part of the content in this lecture comes from:
¿  Joshua Bloch, Effective Java, Addison Wesley, 2008

1. Accessibility of Java
Classes and Members

Access Control in Java
private The member is accessible only from the top-level class where

it is declared.

default The member is accessible from any class in the package where
it is declared. Technically known as default access, this is the
access level you get if no access modifier is specified.

protected The member is accessible from subclasses of the class where
it is declared and from any class in the package where it is
declared.

public The member is accessible from anywhere.

¿  How should we decide which accessibility to use?

What is called well-designed software?
¿  The most important factor to distinguish a well-designed

module from a poorly designed one is the degree to
which the module hides its internal data and other
implementation details from other modules.

Information Hiding
¿  Hides the design decisions and implementation details from

other modules

¿  “The second decomposition was made using ‘information
hiding’ ... as a criterion. The modules no longer correspond
to steps in the processing. ... Every module in the second
decomposition is characterized by its knowledge of a design
decision which it hides from all others. Its interface or
definition was chosen to reveal as little as possible about its
inner workings.” – [Parnas, 1972b]

¿  “... the purpose of hiding is to make inaccessible certain
details that should not affect other parts of a system.” – [Ross
et al., 1975]

The Restaurant

Looks
Yummy!

I’m sure glad
I don’t have to eat

this stuff!

The Restaurant

Customer

Waiter (object)

Data:
name: Joe
tables: 1,2
tickets: 2

Methods:
takeOrder
putOrderonTurnstile
pickup Order
serverOrder

Turnstile (object)

Data:
tickets: 1

Methods:
isTicketReady
add Ticket
remove Ticket

Cook (object)

Data:
name: Arnold
specialties:
 HamandEggs
 Pancakes
 FrenchToast

Private Methods:
makeHamandEggs
makePancakes
makeFrenchToast

Public Methods:
takeTicketFromTurnstile
putOrderOnCounter

Counter (object)

Data:
ordersAvailable

Methods:
isOrderReady
addOrder
removeOrder

Messages invoke methods &
methods send messages

HD4AR Cloud
Server

Mobile Device

Overlay
Content

Original
Photo

Cloud-based Computer Vision Architecture

Overview of the Algorithms

11

Photos
Captured

Feature
Extraction

Feature
Matching

Track
Creation

Structure
from Motion

~15+ photos are taken of a physical object,
such as a building, engine, etc.

Overview of the Algorithms

12

Photos
Captured

Feature
Extraction

Feature
Matching

Track
Creation

Structure
from Motion

•  Example Feature
Detectors/Descriptors
•  SIFT
•  SURF
•  FREAK

Image features (e.g. prominent points in
the image) are extracted and represented
using descriptors

Overview of the Algorithms

13

Photos
Captured

Feature
Extraction

Feature
Matching

Track
Creation

Structure
from Motion

K-D Tree and Fast Approximate
Nearest Neighbors (FANN) used to
find initial feature correspondences

Overview of the Algorithms

14

Photos
Captured

Feature
Extraction

Feature
Matching

Track
Creation

Structure
from Motion

RANSAC algorithm and 8-point method
is used to estimate a fundamental matrix
between image pairs and points more
than σ pixels from an epipolar line are
eliminated

Overview of the Algorithms

15

Photos
Captured

Feature
Extraction

Feature
Matching

Track
Creation

Structure
from Motion

•  Track Cleaning: the Euclidean distance
between matching points is compared
to the minimum Euclidean distance
between any pair in the track and
outliers are removed

Feature tracks are created that track
features across multiple images and a
track cleaning operation is performed

Overview of the Algorithms

16

Photos
Captured

Feature
Extraction

Feature
Matching

Track
Creation

Structure
from Motion

•  Structure from Motion iteratively recovers
the camera parameters for each image and
then triangulates the feature tracks in 3D

•  Bundle Adjustment is used to globally
optimize the camera parameters and track
locations in order to minimize the overall re-
projection error

Cloud-based Computer Vision Architecture

Elastic
Load

Balancer

GPU
Server

GPU
Server Elastic

Load
Balancer

General
Server

General
Server

Elastic
Load

Balancer

Cluster
Server

Cluster
Server NoSQL

Database

S3 File
Storage

What’s behind Google Search?

Benefits of Information Hiding
¿  Allows modules to be developed, tested, optimized,

used, understood and modified in isolation
¿  Development in parallel
¿  Ease maintenance burden
¿  Effective performance tuning and debugging
¿  Increases software reuse
¿  Reduce system development risk

Rule of Thumb

¿  Exposing too many public members violates the principle
of information hiding
¿  Exposing members requires others to understand them

¿  Exposed members are contracts
¿  The methods may be used by other modules, and you have

to support and maintain the compatibility forever
¿  Private members are safe and flexible to change

Make each class or member as inaccessible as possible.
In other words, use the lowest possible access level consistent with

the proper functioning of the software that you are writing.

Accessibility Suggestions

¿  Carefully decide the public APIs (methods) – make them
as few as possible

¿  Make the rest of methods private
¿  When other classes in the same package really need

certain access, make it as package-private (default)
¿  If you see doing this too often, there might be a chance for

a decomposition of the class

¿  A huge increase in accessibility occurs when the access
level from package-private to protected
¿  A protected method is part of the exposed API and must

be supported forever

1. Minimize the Accessibility
of Classes and Members!

2. Use Accessor Methods,
or Public Fields ?

¿  By making the instance variable public:
¿  You give up the ability to limit and control the values
¿  You give up the ability to enforce the invariants involving

the field
¿  You give up the ability to take any action when the field is

modified

Instance Variables Should Never be Public

class Point {

public double x;
public double y;

}

Rule of Thumb
If a class is accessible outside its package, provide access
methods, to preserve the flexibility to change the class’s

internal representation.

class Point {
 private double x;
 private double y;

 public Point(double x, double y) {
 this.x = x;
 this.y = y;
 }

 public double getX() { return x; }
 public double getY() { return y; }
 public void setX(double x) { this.x = x; }
 public void setY(double y) { this.y = y; }

}

¿  You can limit and control the values

¿  You can enforce the invariants involving the field

Using the Accessor Methods

public void setX(double x) {
 if (x >= 0) {
 this.x = x;
 } else {

 thrown new RuntimeException(“Invalid Value”);
 }
}

public double getX() {
 if (x > 100 && y > 100) {
 return x % 100;
 }
}

¿  You can limit and control the values
¿  You can enforce the invariants involving the field
¿  You can take any action when the field is modified

Using the Accessor Methods

public void setX(double x) {
 this.x = x;
 log.info(“User: “ + UserManager.getCurrentUser()
 + “modified the field.”);
}

2. Use Accessor Methods,
NOT Public Fields!

3. Program to Interfaces,
or Implementation ?

Program to Interface
interface IPizza {
 public int getCalories();
}

class PepperoniPizza implements Ipizza {
 public int getCalories() {
 return 500;
 }
}

class CheesePizza implements Ipizza {
 public int getCalories() {
 return 300;
 }
}

class PizzaEater {
 public int getPizzaCalories(IPizza pizza) {
 return pizza.getCalories();
 }
}

PizzaEater eater = new PizzaEater();
eater.getPizzaCalories(new PepperoniPizza());
eater.getPizzaCalories(new CheesePizza());

Program to Implementation
class PepperoniPizza {
 public int getCalories() {
 return 500;
 }
}

class CheesePizza {
 public int getCalories() {
 return 300;
 }
}

class PizzaEater {
 public int getPizzaCalories(PepperoniPizza pepperoniPizza) {
 return pepperoniPizza.getCalories();
 }
 public int getPizzaCalories(CheesePizza cheesePizza) {
 return cheesePizza.getCalories();
 }
}

PizzaEater eater = new PizzaEater();
eater.getPizzaCalories(new PepperoniPizza());
eater.getPizzaCalories(new CheesePizza());

¿  Increased code reuse
¿  Improved flexibility to extend
¿  Since a lot of programmers are paid by the hour, the

more time we spend writing reusable code and the less
time we spend maintaining old code, the better

Benefits of Programming to Interface

Developers Hourly Rate

•  iOS Developers Rate Survey
•  http://mobileorchard.com/ios-rate-survey-results/

3. Program to Interfaces,
NOT Implementation!

4. Prefer Interfaces, or
Abstract Class ?

¿  Interfaces allow any class to be retrofitted
¿  Comparable interface

¿  Extending an abstract class may cause conflicts with
existing methods

¿  If we want 2 classes to extend the same abstract class,
we have to put the abstract class high up in the ancestor
of both classes.

Ease Retrofitting Existing Classes

¿  A mixin is a type that a class can implement in addition to
its “primary type” to declare that it provides some
optional behavior
¿  Comparable, Cloneable, Serializable

¿  A class cannot have more than one parent class.
¿  There is no reasonable place in the class hierarchy to

insert a mixin.

Ideal for Defining Mixins

¿  Organize some things, but other things don’t fall neatly
into a rigid hierarchy

Allow Nonhierarchical Type Frameworks

public interface Singer {
 AudioClip sing(Song s);
}

public interface Songwriter {
 Song compose(boolean hit);
}

public interface SingerSongwriter

 extends Singer, Songwriter {
 AudioClip strum();
 void actSensitive();
}

¿  It is far easier to evolve an abstract class than an
interface
¿  Adding a concrete method containing a reasonable default

implementation in an abstract class will not affect existing
classes.

¿  Adding a new method to a public interface will break all the
existing classes that implement that interface.

¿  Once an interface is released and widely implemented, it
is almost impossible to change
¿  If an interface is severely deficient, it can doom an API.

Things to be Cautions about Interfaces

4. Prefer Interfaces to
Abstract Class!

5. Prefer Class Hierarchies,
or Tagged Classes?

Class Hierarchy
abstract class Figure {
 abstract double area();
}

class Circle extends Figure {

 final double radius;

 Circle(double radius) { this.radius = radius; }
 double area() { return Math.PI * (radius * radius); }
}

class Rectangle extends Figure {

 final double length;
 final double width;

 Rectangle(double length, double width) {
 this.length = length;
 this.width = width;
 }
 double area() { return length * width; }
}

Tagged Class Example
class Figure {
 enum Shape { RECTANGLE, CIRCLE };

 // Tag field - the shape of this figure
 final Shape shape;

 // These fields are used only if shape is RECTANGLE
 double length;
 double width;

 // This field is used only if shape is CIRCLE
 double radius;

 // Constructor for circle
 Figure(double radius) {
 shape = Shape.CIRCLE;
 this.radius = radius;
 }

 // Constructor for rectangle
 Figure(double length, double width) {
 shape = Shape.RECTANGLE;
 this.length = length;
 this.width = width;
 }

Tagged Class Example
 ……

 double area() {
 switch(shape) {
 case RECTANGLE:
 return length * width;
 case CIRCLE:
 return Math.PI * (radius * radius);
 default:
 throw new AssertionError();
 }
 }

}

¿  Tagged classes are verbose, error-prone, and inefficient
¿  Poor readability
¿  Constructor sets the right data and type
¿  Keep unused data in memory

Class Hierarchy

¿  Simple and clear code
¿  No irrelevant data
¿  Final fields
¿  No runtime error due to missed type
¿  Separated type and data fields
¿  Increased flexibility and compile-time type checking

class Square extends Rectangle {
 Square(double side) {
 super(side, side);
 }
}

5. Prefer Class Hierarchies
to Tagged Classes!

6. Favor Composition, or
Inheritance ?

Inheritance is Powerful, but …

¿  Good reuse but has problems

Inheritance Violates Encapsulation

¿  A subclass depends on the implementation details of its
superclass for its proper function

¿  The superclass’s implementation may change from
release to release, and if it does, the subclass may break,
even though its code has not been touched

¿  A subclass must evolve in tandem with its superclass

Example – Count Added Elements
public class InstrumentedHashSet<E> extends HashSet<E> {

 // The number of attempted element insertions
 private int addCount = 0;

 public InstrumentedHashSet(int initCap, float loadFactor) {

 super(initCap, loadFactor);
 }

 @Override
 public boolean add(E e) {
 addCount++;
 return super.add(e);
 }

 @Override
 public boolean addAll(Collection<? extends E> c) {
 addCount += c.size();
 return super.addAll(c);
 }

 public int getAddCount() {
 return addCount;
 }
}

Example – Count Added Elements

¿  What’s the output?

¿  Internally, addAll method is implemented on top of its
add method, although it is not documented in detail

InstrumentedHashSet<String> s =
 new InstrumentedHashSet<String>();

s.addAll(Arrays.asList("Snap", "Crackle", "Pop"));

Potential Problems of Inheritance

¿  Without knowing the actual implementation details,
inheritance could cause unexpected errors

¿  Newly added methods in superclass could change the
semantics of the superclass, but the subclasses never
know

¿  A new method in the superclass has a duplicated
signature but different return type

Use Composition

¿  Instead of extending an existing class, give your new class
a private field that references an instance of the existing
class

¿  Each instance method in the new class invokes the
corresponding method on the contained instance of the
existing class and returns the results. This is known as
forwarding

Example – Use Composition
public class ForwardingSet<E> implements Set<E> {

 private final Set<E> s;

 public ForwardingSet(Set<E> s) { this.s = s; }

 public void clear() { s.clear(); }
 public boolean contains(Object o) { return s.contains(o); }
 public boolean isEmpty() { return s.isEmpty(); }
 public int size() { return s.size(); }
 public Iterator<E> iterator() { return s.iterator(); }
 public boolean add(E e) { return s.add(e); }
 public boolean remove(Object o) { return s.remove(o); }
 public boolean addAll(Collection<? extends E> c)
 { return s.addAll(c); }
 public boolean removeAll(Collection<?> c)
 { return s.removeAll(c); }
 public boolean retainAll(Collection<?> c)
 { return s.retainAll(c); }
 public Object[] toArray() { return s.toArray(); }
 public <T> T[] toArray(T[] a) { return s.toArray(a); }
 @Override public boolean equals(Object o)
 { return s.equals(o); }
}

Example – Use Composition
public class InstrumentedSet<E> extends ForwardingSet<E> {

 private int addCount = 0;

 public InstrumentedSet(Set<E> s) {
 super(s);
 }

 @Override public boolean add(E e) {
 addCount++;
 return super.add(e);
 }

 @Override public boolean addAll(Collection<? extends E> c) {
 addCount += c.size();
 return super.addAll(c);
 }

 public int getAddCount() {
 return addCount;
 }
}

6. Favor Composition
Over Inheritance!

