A Brief Introduction to UML

CS356 Object-Oriented Design and Programming
http://cs356.yusun.io
October 13, 2014

-

CAL POLY POMONA

Yu Sun, Ph.D.
http://yusun.io
yusun@csupomona.edu

UML in One Sentence

The UML is a graphical language for
¢ visualizing

+ specifying

¢ constructing

+ documenting

artifacts of a software-intensive system

UNIFIED o
MODELING
LANGUAGE ™

Visualizing

Explicit model facilitates communication
Some structures transcend what can be represented in
programming language

Each symbol has well-defined semantics behind it

Specifying

¢ The UML addresses the specification of all important
analysis, design, and implementation decisions.

«subsystems
Dinner Now System

2)
e
2) ' \ 6L @
% _ 3 Order a Meal 7/_@
e
S

Customer estaurant 4
. \ Order meal

’
7 \

/
Customer «lnclude» , «include» . N «mclude

2)
Deliver Meal

\
N\
Y N
Choose Menu Select menu item

RN «extend» !
W
Reglstered Customer N - ,

. «artifacts
available to registered Pay.sequencediagram
customers after July) 4

Filter by dietary requirements

Constructing

Forward engineering: generation of code from model
into programming language

Reverse engineering:

implementation

reconstructing model from

e

[J] MultipleMethodsClass.java 53

public class MultipleMethodsClass {

Start of user code (user defined attributes)

/ End of user code

* The constructor.

public MultipleMethodsClass() {
// Start of user code constructor
super();
// End of user code

* Description of the method firstMethod.

public Boolean firstMethod() {
// Start of user code thod
Boolean firstMethod, =
return firstMethod;Rﬁ

End of user code
} Compare With
Replace With

Traceability

* Description of the meth

*/ Preferences...
public Integer secondMethoa() 3

/_Start of

1

0]

[{%) Related Files &2 _{f.(Problems| =] Properties| €] Error Log

type filter text

nzar rade far mathad sacandMethad

&) NonRegressionModel.uml &2 =0
- &) platform:/resource/org.eclipse.acceleo.module.example.uml2java.helios/m¢ »
<Model> model
£ <Package> org
E3 <Package> obeonetwork
£ <Package> pim
Ea <Package> umi2
B <Package> gen
£ <Package> java
B3 <Package> tests
B3 <Package> enumeration
£ <Package> classes
Ea <Package> properties
Ea <Package> methods
E3 <Package> parameters
] <Class> SingleMethodClass
] <Class> MultipleMethodsClass
4 <Operation> firstMethed () : Boc
&3 <Operation> secondMethod () :
4 <Operation> thirdMethod () : Sti
%] <Class> SingleCommentedMethodt
Q <Class> MultipleCommentedMethc
] <Class> VisibilityMethodsClass
"~ kClass> TypeMethodsClass
#Class> StaticMethodClass
%Class> FinalMethodClass
] <Class> AbstractMethodClass
=

i _ 2 Claces CardinalihMethadelace
< 1 »

K

m

m

Ctrl+Alt+M
Ctrl+Alt+T

ao Openlnput

Open Generator

#] /org.eclipse.acceleo.module.example.uml2java.helios/model/NonRegressionModel.uml [input]
[J] /outputfolderpropre/src/org/obeonetwork/pim/uml2/gen/java/tests/classes/methods/MultipleMethodsClass.java [output]
(J platform:/plugin/org.obeonetwork.pim.uml2.gen.java/bin/org/obeonetwork/pim/uml2/gen/java/common/commeon.mtl [generator]

Documenting

¢ Deliverables, such as requirements documents, functional
specifications, and test plans

¢ Materials that are critical in controlling, measuring, and
communicating about a system during development and

after deployment

[eno]

Fishbone Diagram
lllustration
Management

Maps

Marketing

Metro Map

Project Management
Sales Dashboard
Social Media Response
Software Development
Spatial Infographics
QM

Value Stream Mapping
Wireless Networks

Workflow Diagrams

UML Component
Diagram

L
E—i

UML Object Diagram

B

z3] d

UML Composite UML Deployment
Structure Diagram Diagram

ygy B B S
H| |

UML Package Diagram UML Sequence Diagram

,43

-4

.
\

Templates Information
J Blank Document B - o - B B o B B B o - B
| Open Document ¢ ¢ ? UML
& History e — /%*7‘,—1 The Rapid UML Solution
§ Additional Templates... T T ? et et % " - containts set of templates, that
Q- search X T D—E_‘ allows you to swiftly develop
o~ o il - i
— 3 @ ® I)E% > any type of UML diagram.
=e UML Activity Diagram UML Activity Diagram UML Class Diagram UML Communication
ERD (Swimlanes) Diagram
Education)
Engineeriny 9 £}

)

5

GH &=

—

UML Interaction
Overview Diagram

' n

ata _4!“&"
@

UML State Machine
Diagram

UML and Blueprints

+UML provides a standard way to write a system's
“blueprints” to account for

+ Conceptual things (business processes, system functions)

¢ Concrete things (C++/Java classes, database schemas,
reusable software components)

Construction - Blueprint

AL

2

MEZZANINE PLAN

SCALE: 1/2" 3 10"

@

@]P - e
— 1
I —MCD(GA*A!NMVES
B M
I I
11 1

R

1= e o noa

- —

155 e
P uS

P
T .

o 9 VO,

L !. 3 144"

- @
!
|

TUAL

|

e iﬂfwimr'l ﬂlf

— SIEWLK
Pingin FLOOR

NEUTKAL HFIEX L

SCALE 5/4° = 1-0"

NOTE
NO_STRLCTUIA CRAMINGS
e O SR AL

RAL ASSUMED.
gnns TSl Fo RrTRCHCE

1AV,

EDGE OF FINSK FLOOR
S0

% e |
—&-Fdn .
N o

|
UNE OF WL
NARQUEE AWNING

—

+

646 V00D PURLN T
BOW STRING TRUSS

12012 CIy 7-6 1/2"

G Fuol

NP R
e Lo,

LEASTUNE_ D THE EXTERIGR

FACE OF THE GOWC. WALL

14527

——

,.;7"/‘

/'_
|

SKYLGHT DNCLOSED AND BULT
Up FOR AT CURS.

TR O T Tl &
THE EXSTNG FUAS]
NEVRAL PIERS

i (3
: v
EXISTING NEUTRA PIES -
#5500 1o B ROWGYED
v et

§-10=3 108

O NARQUEE
sk & 3740
SELOW FNISH TLOOR

49 aco

e WS SOt
0 Kool ArtoRs @ 43¢ 0.
REFER FHOTOS 88 & 82

Reasons to Model Software

¢ To communicate the desired structure and behavior of
the system

¢ To visualize and control the system architecture

¢ To better understand the system and expose
opportunities for simplification and reuse

¢ To manage risks

UML History

State Charts) Harel 1987

Ada/Booch
Booch (RDD) O0OSA
1990 Wirfs-Brock Shiaer/Mellor
Booch'91 —1 _—{OMT
Methodologies LS (‘EE?
proliferate Booch '93 Jacobsen Gibson/Goldberg Coad/Yourdon
Coleman OODA
Booch (oMT '94 N\ ((OOSE 94 Martin/Odell
Rumbaugh
1 995 OOPSLA '95
Mature practice \i m
P '3 amigos" (UML 0.9 (MOSES |
Graham Henderson=Seller.
1997 Accepted by OMG Nov. 97 [UML 1.1 ':_I'l:asaig:‘ OPEN/OML @D
P Unified Colemanu.a. Open-Group
Standardization Broce
Accepted by ISO Okt.2000 (UML 1.3 RUP_’__OEP
Published Nov. 2000 UML 1.4
March 2003 | UML 1.5

2005 2005(UML 2.0

Executable

Language
- 2007(UML 2.1.2 N
proliferate : (SysML 1.1) (BPMN 1.1)

2008 | UML 2.2

UML

UML History

State Charts) Harel 1987

Ada/Booch

Booch

1990

Booch'91}—1 _—{OMT
Methodologies

proliferate Booch '93

Booch
Rumbaugh

1995 OOPSLA '95 M‘
; 1Y

Mature practice .5 amigos" UML 0.9

1997 Accepted by OMG Nov. 97 [UML 1.1

Standardization

Accepted by ISO Okt.2000 [UML 1.3
Published Nov. 2000 UML 1.4

Jacobsen

~

(OOSE 94

(OMT 94

N [

e Grady Booch

Graham ‘r Heneson-gelleéj
RD

OPEN/OML
Unified Colemanu.a. Open-Group

Proce
RUP, OEP

March 2003 | UML 1.5

2005 2005(UML 2.0

Executable

UML
SysML1.1) (BPMN 1.1)

Language
proliferate 2007(_UML 2.1.2 \[
2008 | UML 2.2

Overview of UML Diagrams

Behavioral
: behavioral features of a system siness
Structural proce o ey e

: element of spec. irrespective of time o

Activity

State machine
Class

Use case
Component .

Interaction
Deployment
Object
Composite structure Interaction
Package : emphasize object interaction

Communication
Sequence
Interaction overview
Timing

Overview of UML Diagrams

Behavioral
: behavioral features of a system / business
Structural process T

: element of spec. irrespective of time o

Activity

State machine
Class

Use case
Component)

Interaction
Deployment
Object
Composite structure Interaction
Package : emphasize object interaction

Communication
Sequence
Interaction overview
Timing

|. Class Disgram

‘ Earollmear
| Muar ks Racieved
A M Nerkc
Cule Fnal Mu

\
\
\ S+uwdent 9
o N, entolled e .| Seavner
Narg
Number
Studef Mmaber " Fees
- Laitoag fist ct AJX Stede

Catell . Um rg;
PM&'%"‘F Serianfg

)
Calevlate avetage macke Fo g

UML Class Diagrams

What is a UML class diagram?

¢ A picture of the classes in an OO system, their fields and
methods, and connections between the classes that
interact or inherit from each other

What are some things that are not represented in a UML
class diagram!?

+ details of how the classes interact with each other

¢ algorithmic details; how a particular behavior s
implemented

Diagram of One Class

Class name in top of box
+ write <<interface>> on top of interfaces' names
+ use itdlics for an abstract class name

Attributes (optional)

+ should include all fields of the object

Operations / Methods (optional)

+ may omit trivial (get/set) methods

but don't omit any methods from an interface!

¢ should not include inherited methods

Rectangle

- wyictth: int
- height: int
farea: double

+ Rectangle(width: int, height: int)
+ distance(r: Rectangle): double

Student

ame:String
4d:int
dotalStudentstint

#getlD(xint
+getNam e(): String
~getE mail Address(1String

+get T otal Students(Tint

Class Attributes

Attributes (fields, instance variables)
+ visibility name : type [count]| = default_value

+ visibility: + public
protected
- private
~ package (default)
[derived

¢ underline static attributes

+ derived attribute: not stored, but can
be computed from other attribute values

+ attribute example:
- balance : double = 0.00

Rectangle

- wyictth: int
- height: int
farea: double

+ Rectangle(wvidth: int, height: int)
+ distance(r: Rectangle): double

Student

ame:String
4d:int
dotalStudentstint

#getlD(Tint
+getNam e(): String
~getE mail Address(1String

+get T otal Students(Tint

Class Operations / Methods

Operations / Methods
+ visibility name (parameters) : return_type

Rectangle
. ViSibi“t)’Z + public — wvidth: int B
protected - height: int
- private larea: double
~ package (default) + Rectangle(wvidth: int, height: int)
+ distance(r: Rectangle): double

o underline static methods

+ parameter types listed as (name: type) Student

¢ omit return_type on constructors and

when return type is void -hame:String

4d:int
dotalStudentssint
+ method example: .
+ distance(p|: Point, p2: Point): double *getD(rint
+getMam e(): String

~getE mail Address(1String
+et T otal Students(Tint

Comments

Represented as a folded note, attached to the
appropriate class/method by a dashed line

Cloneahle is a =

ArrayList “tagging" interface
with no methods.

: The clone() method
i is defined in the
D e e 10bject class.

«interface»
Cloneable

Relationships in Class Diagram

Generalization: an inheritance relationship
+ inheritance between classes

+ interface implementation

Association: a usage relationship
+ dependency
¢ aggregation

¢ composition

Generalization

Generalization (Inheritance)

¢ hierarchies drawn top-down with arrows
pointing upward to parent

¢ line/arrow styles differ, based on whether
parent is a(n):
class:
solid line, black arrow

abstract class:
solid line, white arrow

interface:
dashed line, white arrow

+ we often don't draw trivial / obvious
generalization relationships, such as drawing the
Object class as a parent

«interface»
Shape

+ getdrea(): double
FaY
]
]
i

RectangufarShape

- wicth: int
- height: int
farea: double

RectangularShape(width: int, height: int)
+ containsip: Point): boolean

+ getAreal): double

Rectangle

- % int
-y int

+ Rectangle(x: int, v: int, width: int, height: int)
+ contains(p: Point): boolean
+ distance(r: Rectangle): double

Association

Associational (usage) relationships

|. multiplicity

(how many are used)

* = 0, |, or more

I = | exactly

2.4 = between 2 and 4, inclusive
3.* = 3 or more
2. name

3. navigability

(what relationship the objects have)

(direction)

Class A

1Q o

K Class B
contains

(2

Multiplicity of Associations

one-to-one

each student must carry exactly one ID card

Student

-idCard: IDCard

carries

:,1>

one-to-many

IDCard

- name: String
- id: String
- password: String

one rectangle list can contain many rectangles

RectangleList
- list: ArrayList

+ add(r: Rectangle):
+ clear()

contains

Rectangle

-x:int

~|-y:int
=

+ contains(p: Point): boolean
+ distance(r: Rectangle): double

Association Types

Aggregation: ’has-a/is part of"

+ symbolized by a clear white diamond

Composition: "is entirely made of"

+ stronger version of aggregation
+ the parts live and die with the whole
+ symbolized by a black diamond

Dependency: "uses temporarily"
+ symbolized by dotted line

+ often is an implementation

detail, not an intrinsic part of
that object's state

Lottery
Ticket

Car

1 —
1

Engine

composition

dependency

aggregation

Rando

Association Types

Simple association:

+ generic format

+ some type of link or dependency dependency

\

Restaurant

dependency

\

Customer

Class Diagram Example |

TheVaotingProgram
VoterAuthentication VoterPersonalldentification
voterPersonalinfo: VoterPersonallnformation FvoterLastMName: String
voterlD: String -voterFirsthame: String
voterPassword: securePvy LyoteriMiddleName: String
~voterSSN: String
[>-voterAddress1: String
Lvoter Address2: String

L -voterCity: String
, pvoterState: String

BallotCreation

hallotName: String
candidates: String [];

displayBallot(): void
createBallot(): void

this 1

subset of the ai

iy

mly a sma

4]

package ...

Tua

Lvoter ZIP: String

+validate ZipCode(voter ZIP: String): String
+validateState(parameter0VoterState: String): St

[

secureP\VW

) PWEntered: JPasswordField

&> securePW(PW securePW) securePy

Class Diagram Example 2

Menultems | *

Menultem

ChosenMenu

MenuChoice '\D
Orders

Order D

1

Menultem

|\9 .@ *

= Attributes
+ TotalPrice : Money @
I=} Operations

+ AddItem(Menultem) \9
+ Deleteltem(Menultem)

Orderltems | *

" ®

Orderitem

[= Attributes
+ quantity
|=} Operations

PhoneOrder (1)

[= Attributes
+ CallbackNumber : String

|=] Operations

Class Diagram Example 3

Subject

Observer (ObserverCollection) -~ registerObserver(observer)
notify() unregisterObserver(observer)
notifyObservers()
ConcreteObserverA ConcreteObserverB notifyObservers() -
: : for observer in ObserverCollection
notify() notify() call observer notify()

Tools for Creating UML Diagrams

¢+ Violet

o http://horstmann.com/violet/

+ Google Drive

o http://drive.google.com

+ Rational Rose

o http://www.rational.com/

Class Design Exercise

Design Texas Hold 'em poker game system:

¢ Human or computer players
+ Each player has a name and stack of chips

¢+ Computer players have a difficulty setting: easy, medium,
hard

o A deck contains 52 cards

¢ For each hand:

Dealer collects ante from appropriate players, shuffles the
deck, and deals each player a hand of 2 cards from the deck

A betting round occurs, followed by dealing 3 shared cards
from the deck

As shared cards are dealt, more betting rounds occur, where
each player can fold, check, or raise

At the end of a round, if more than one player is remaining,

players' hands are compared, and the best hand wins the pot
of all chips bet so far

Class

Design

Player

- hame: String
- maney: int
- currentBet: int

- hand: Hand

- inRound: hoolean

+ fold{)

+ clearHand)

+ het{amount: inf): boolean {throws ...}
+winhMoney(amount: inf)

Exercise

«interface»
Comparable

+ compareTo{o: Ohject). int

HumanPlayer

0.52

T
ComputerPlayer Card
- difficulty: int - rank: int
- decideMove() - suit:int
- faceUp: boolean
+ compareTo(o: Object): int

Deck

1 |- cards: Stack

+ shuffle()
+ drawCard(): Card
+ reset()

stores

2. Sequence Diagram

fu‘-\ {

WQ 0.1:‘51 ~0nte b

ck.u
Mf%

|

: D*ﬁzﬂ" Whads le-
: ’Dq_’g 'gg'wf'

| 'p [NRYT SER N
Feseed Cyami | [y gs -ty

W
e fecespt, L L .Ié_ “““““ ﬁﬁﬁt__b?ﬁfo«iﬁ

UML sequence diagrams

+ Sequence diagram: an ‘interaction diagram" that
models a single scenario executing in the system

¢ perhaps 2nd most used UML diagram (behind class

diagram)
.\

)/
O///'

Easy to Understand

user fibrary computer books database

1: login

1.1: authenticate

1.1.1: acknowledge
1.1.1.1: logged in or wrong password

2: enter book name
2.1: search for the book

2.1.1: acknowledge of the search
2.1.1.1: book found or not

3: request for issue

3.1: book status: issued

3.2: book issued

4: logout

4.1: logout succesful

x| AR |Tx |
X———-——-J—-—ﬁ——-lﬂ-——-

= A S

Key Parts in a Sequence Diagram

Participant: an object or entity that acts in the
sequence diagram

¢ sequence diagram starts with an unattached "found
message" arrow

Message: communication between participant objects

The axes in a sequence diagram:
¢ horizontal: which object/participant is acting

+ vertical: time (down -> forward in time)

Sequence Diagram from Use Case

2 HO HO @, O

Basic Course 1: Customer 2: Search Page 3: Search Results Page 4: Catalog 5: Search Results

The Customer specifies an
author on the Search Page I
and then presses the Search U
I
I
I
l
I
I
I
I
I
I
I

onSearch()

button.

The system validates
the Customer's search criteria.

The system searches the Catalog
for books associated with the
specified author,

validateSearchCriteria()

|
|
|
|
|
) |

searchByAuthor(

create()

When the search is complete, the
system displays the search results
on the Search Resuits Page.

Alternate Course

If the Customer did not enter the

name of an author before pressing

the Search button, the system displays |
an error message to that effect and
prompts the Customer to re-enter an l
author name. |

displayErrorMessagel()

|
Li

| |
| |
| |
| |
| |
| |
: |
| g
P a
us

|

| |
| |
| |
| |
| |
| |

>l;]

display() I.I
|

|

|

I

|

|

|

|

Representing Objects

Squares with object type, optionally preceded by object
name and colon

+ write object's name if it clarifies the diagram
+ object's "life line" represented by dashed vert. line

R ous of
bjec U .
Smith:Patient Patient Smith

%

ACYIVE
goyec”

Name syntax: <objectname>:<classname>

Messages between Objects

Message (method call) indicated by horizontal arrow
to other object

¢ write message name and arguments above arrow

‘Hospital

Admit (patientID, roomType)

)

Messages

Message (method call) indicated by horizontal arrow
to other object
+ dashed arrow back indicates return

o different arrowheads for normal / concurrent
(asynchronous) methods

Messages
:Controller
T Controller vroced‘“‘e CO\\
o L
f con™ K- - -
\a¥ flow ©
£ <---- B\

Lifetime of Objects

Creation: arrow with 'new'
written above it

a Handler

¢ notice that an object created e
. query atabase
after the start of the scenario g
appears lower than the others e s

new a Database
Statement

-
D deletion

from other
results object

©
>
@©
o
S
@

Deletion: an X at bottom of
object’s lifeline

¢ Java doesn't explicitly delete
objects; they fall out of scope U‘#h
close |
and are garbage-collected N4

PR X
results

"' self-deletion

|

Indicating Method Calls

Activation: thick box over object's life line; drawn when
object's method is on the stack

+ either that object is running its code, or it is on the stack
waiting for another object's method to finish

¢ hest to indicate recursion

'Controller -Activation -

‘Nesting]

Indicating Selection and Loops

¢ frame: box around part of a sequence diagram to indicate selection or
loop

¢ 1if -> (opt) [condition]
¢+ 1if/else ->(alt) [condition], separated by horizontal dashed line
+ loop -> (loop) [condition or items to loop over]
Order avor | | Diavbuor | | Messenger
dispatch | | | |
I | | | |
loop [for each line item] ‘ ‘ ‘
||
operator alt J [value > $10000] ‘ ‘ frame‘
dispatch ‘ ‘ ‘
T | |
--------------------- S R - |
[else] ‘ ‘ ‘
disp_atch ‘ ‘
guard ‘ /|_| ‘
| | |
opt [needsConfirmation] ‘ confirm ‘ ‘
! | | I
| | |
| | |

Linking Sequence Diagrams

If one sequence diagram is too large or refers to another diagram, indicate
it with either:

+ an unfinished arrow and comment
+ a"ref" frame that names the other diagram

Diagram 2

Diagram |

obl:.C] ob3:C3 ob4:C4
Customer Info ref) : . }_. —;
har{x
1 [x<0] bar(x) w(x) 1 |
—i- ’
|

The flow doit(w)

The flow

Verify customer credit

continues in originates in

Diagram 2. Diagram |.

Approved?

A

- — — — —

[
[
\
|
\
[
\
\
\
[
\
\
\
[
\
\
I
[
\
\
\
\
\
[

Example — Shopping Cart

sd Example J

PlaceltemInOrder

StoreFront art Inventory
I I I
| | |
| | |
[[[

loop /| Addltem | |
> Reserveltem |
T
T |
.. Checkout |
1
= ProcessOrder
ConfirmOrder

Example — Oauth 2.0

¢ OAuth provides client applications a secure delegated
access to server resources on behalf of a resource
owner

Use another service to log in.

& Sign in with Twitter

Sign in with Facebook

') e 00 Authorize | LinkedIn
Select service [@ https://www.linkedin.com/uas/oauth/authorize?oauth_token=3d88fb4a-3638-40c6-... |

Linked Mike Repass - Sign Out

Or use quick sign-in to PamFax:

Grant Signal access to your LinkedIn Account "Mike Repass"
Only allow access if you trust this application with your LinkedIn network information

GOOS[C n Facebook Q " signal

¢ YaAHOO! 2 Windowslive D

Access Duration: Until Revoked change

You can always revoke Signal's access through your settings page. By granting
access you agree to the LinkedIn Terms of Service

Example — Oauth 2.0

redirect to auth page

| Consumer | | Service |

request_token

grant request_token

authorize request_token

T >

|
acknowledge authorization

redirect to consumer

Authentjcation complete

access_token

grant access_token

access protected resource’
return requested data

access protected resouroe’
return requested data

access protected resouroe’
return requested data

Forms of System Control

What can you say about the control flow of each of the

following systems?
¢ lIs it centralized!?
¢ lIs it distributed?

Ord Order Li aProduct Custome
calculatePrice | . | |
® > getQuantity
> |
getProduct participant | Hfeline
—
ound aProduct |
message e o ST
i . activation
getPricingDetail "~ return |

\J

self-call

T

-]

l_)l l

vl
vl

T

| S|

an Order an Order Line aProduct aCustomer
calculatePrice ! | | parameter |
calculatePrice | | |
»— getPrice(quantity: number) |
L m |
|getD|scountedValue (an Order) |
| getBaseValue |
|:|< | | return
| |
------—--=-- | ~~~~~~~~~~~~~~~ 1 ~~~~~~~~~~~
— discountedValue

Why not just code it!

Sequence diagrams can be somewhat close to the code
level. So why not just code up that algorithm rather than
drawing it as a sequence diagram?

= a good sequence diagram is still a bit above the level of the real
code (not all code is drawn on diagram)

= sequence diagrams are language-agnostic (can be implemented
in many different languages

= non-coders can do sequence diagrams
= easier to do sequence diagrams as a team

= can see many objects/classes at a time on same page (visual
bandwidth)

3. Use Case Diagram

SENSORS

[
|
PARK RANGE R :
|

e emm e e e e e i — — —

Use Cases

What is a Use Case?

¢ A formal way of representing how a business system
interacts with its environment

¢ lllustrates the activities that are performed by
the users of the system

¢ A scenario-based technique in the UML

+ A sequence of actions a system performs that yields a
valuable result for a particular actor

Use Cases

Use case diagrams describe what a system does
from the standpoint of an external observer. The
emphasis is on what a system does rather than how.

Use case diagrams are closely connected to scenarios.
A scenario is an example of what happens when
someone interacts with the system.

Use Cases

Here is a scenario for a medical clinic.

¢ A patient calls the clinic to make an appointment for a yearly
checkup. The receptionist finds the nearest empty time slot in the
appointment book and schedules the appointment for that time
slot. "

We want to write a use case for this scenario.

Remember: A use case is a summary of scenarios for a
single task or goal.

Use Cases

The picture below is a Make Appointment use case for the medical
clinic.

The actor is a Patient. The connection between actor and use case is a
communication association (or communication for short).

f. communication
actor —» i @keﬁppointm@

Patient ,\
use case

Actors are stick figures.
Use cases are ovals.

Communications are lines that link actors to use cases.

Use Case in Practice

UML in the Industry Today

Not as popular as in the 90’s
Important for us to learn OOP (e.g., design patterns)
Helpful in communication and visualization

¢ Class diagram

+ Sequence diagram

White boarding sketching is more important than tool-
based diagrams

Could be asked during tech-Interview!

