
CS356 Object-Oriented Design and Programming
http://cs356.yusun.io
October 17, 2014

Yu Sun, Ph.D.
http://yusun.io
yusun@csupomona.edu

SOLID: Principles of OOD

Part of the presentation comes from
¿  Martin, Robert Cecil. Agile software development:

principles, patterns, and practices. Prentice Hall PTR,
2003. APA

Author: Robert C. Martin
Nick Name: Uncle Bob

What is Software Design?

¿  The source code is the design
¿  UML diagram represents part of a design, but it is not

the design
¿  Because the design can only be verified through source

code
¿  The software design process includes coding, testing,

refactoring…
¿  The programmer is real software designer

Software Nature – Software Entropy

¿  Software tends to degrade / decay
¿  Software rot – like a piece of bad meat

The Cost of Change

Developers Productivity vs. Time

Design Smells – The Odors of Rotting Software

¿  Rigidity – The design is hard to change
¿  Fragility – The design is easy to break
¿  Immobility – The design is hard to reuse
¿  Viscosity – It is hard to do the right thing
¿  Needless complexity – Overdesign
¿  Needless Repetition – Mouse abuse
¿  Opacity – Disorganized expression

What Stimulates the Software to Rot?
¿  Requirements keep change – design degradation
¿  People change – violate the original design
¿  Tight schedule pressure

Psychology Reason: Broken Window Theory

n  Came from city crime
researcher

n  A broken window will trigger
a building into a smashed and
abandoned derelict

n  So does the software
n  Don’t live with the Broken

window

How to Prevent Software from Rotting?

¿  Applies OO design principles
¿  Bad design usually violates design principles

¿  Uses design patterns
¿  Follows agile practices
¿  Refactoring will reduce the software entropy

S.O.L.I.D Design Principles

S.O.L.I.D Design Principles

¿  SRP – The Single Responsibility Principle
¿  OCP – The Open-Closed Principle
¿  LSP – The Liskov Substitution Principle
¿  ISP – The Interface Segregation Principle
¿  DIP – The Dependency Inversion Principle

1. Open Close Principle

Open-Closed Principle (OCP)

¿  “Software Systems change during their life time”
¿  Both better designs and poor designs have to face the changes;
¿  Good designs are stable

¿  Be open for extension
¿  Module's behavior can be extended

¿  Be closed for modification
¿  Source code for the module must not be changed

¿  Modules should be written so they can be extended without
requiring them to be modified

Software entities should be open for extension,
but closed for modification

B. Meyer, 1988 / quoted by R. Martin, 1996

The Open-Closed Principle (OCP)

¿  We should write our modules so that they can be
extended, without requiring them to be modified

¿  We want to change what the modules do, without
changing the source code of the modules

¿  Why is it bad to change source code?
¿  How is OCP implemented?

The Open/Closed Principle (OCP) Example

An Example of what
not to do!

What is wrong with
this code?

The Open/Closed Principle (OCP) Example

¿  The Problem: Changeability…
¿  If I need to create a new shape, such as a Triangle, I must modify

the ‘drawShape()' function
¿  In a complex application the switch/case statement above is

repeated over and over again for every kind of operation that
can be performed on a shape

¿  Worse, every module that contains such a switch/case statement
retains a dependency upon every possible shape that can be
drawn, thus, whenever one of the shapes is modified in any way,
the modules all need recompilation, and possibly modification

¿  However, when the majority of modules in an application
conform to the open/closed principle, then new features can
be added to the application by adding new code rather than
by changing working code. Thus, the working code is not
exposed to breakage

The Open/Closed Principle (OCP) Example

Open the Door…

¿  How to make the Car run efficiently with a TurboEngine?
¿  Only by changing the Car!

¿  …in the given design

…But Keep It Closed

¿  A class must not depend on a concrete class!
¿  It must depend on an abstract class…
¿  …using polymorphic dependencies (calls)

Another Example about the Car

¿  Different CD/Radio/MP3 players can
be plugin to the car dashboard.

¿  …using polymorphic dependencies

OCP Heuristics

¿  Changes to public data are always at risk to “open” the
module
¿  They may have a rippling effect requiring changes at many

unexpected locations;
¿  Errors can be difficult to completely find and fix. Fixes may cause

errors elsewhere
¿  Non-private members are modifiable

¿  Case 1: "I swear it will not change"
¿  May change the status of the class

¿  Case 2: a Time class with open members
¿  May result in inconsistent times

Make all object-data private
No Global Variables!

Importance of OCP

¿  This principle is at the heart of object oriented design.
Conformance to this principle is what yields the greatest
benefits claimed for object oriented technology (i.e.
reusability and maintainability)

¿  Conformance to this principle is not achieved simply by
using an object oriented programming language. Rather,
it requires a dedication on the part of the designer to
apply abstraction to those parts of the program that the
designer feels are going to be subject to change

Example: Android Widgets

2. Liskov Substitution Principle

 Liskov Substitution Principle (LSP)

¿  The key of OCP: Abstraction and Polymorphism
¿  Implemented by inheritance
¿  How do we measure the quality of inheritance?

Inheritance should ensure that any property proved about
supertype objects also holds for subtype objects

B. Liskov, 1987

Functions that use pointers or references to base classes
must be able to use objects of derived classes

without knowing it
R. Martin, 1996

The Liskov Substitution Principle (LCP) Example

Inheritance Appears Simple
interface Bird { // has beak, wings,...
 public void fly(); // Bird can fly
}

class Parrot implements Bird { // Parrot is a bird
 public void fly() { … } // Parrot can fly
 public void mimic() { … }; // Can Repeat words...
}

// ...
Parrot mypet;
mypet.mimic(); // my pet being a parrot can Mimic()
mypet.fly(); // my pet “is-a” bird, can fly

Penguins Fail to Fly!
class Penguin implements Bird {
 public void fly() {
 error (“Penguins don’t fly!”); }
}

void PlayWithBird (Bird abird) {
 abird.fly(); // OK if Parrot.
 // if bird happens to be Penguin...OOOPS!!
}

¿ Does not model: “Penguins can’t fly”
¿ It models “Penguins may fly, but if they try it is an error”
¿ Run-time error if attempt to fly → not desirable
¿ Think about Substitutability – Fails LSP

Design by Contract

¿  Advertised Behavior of an object:
¿  Advertised Requirements (Preconditions)
¿  Advertised Promises (Postconditions)

When redefining a method in a derivate class, you may only
replace its precondition by a weaker one, and

its postcondition by a stronger one
B. Meyer, 1988

Derived class services should require no more and promise no less

int Base::f(int x);

// REQUIRE: x is odd

// PROMISE: return even int

int Derived::f(int x);

// REQUIRE: x is int

// PROMISE: return 8

Square IS-A Rectangle?

¿  Should I inherit Square from Rectangle

Square

?

The Answer is…

¿  Override setHeight and setWidth
¿  Duplicated code…

¿  The real problem
public void g(Rectangle r) {

 r.setWidth(5); r.setHeight(4);

 // How large is the area?

}

¿  20! ... Are you sure? ;-)

LSP is about Semantics and Replacement

¿  The meaning and purpose of every method and class must be
clearly documented
¿  Lack of user understanding will induce violations of LSP
¿  In previous example, we have intuition about squares/rectangles,

but this is not the case in most other domains

¿  Replaceability is crucial
¿  Whenever any class is referenced by any code in any system, any

future or existing subclasses of that class must be 100%
replaceable

¿  Because, sooner or later, someone will substitute a subclass; it’s
almost inevitable

¿  Violations of LSP are latent violations of OCP

LSP and Replaceability

¿  Any code which can legally call another class’s methods
¿  Must be able to substitute any subclass of that class

without modification:

Client Service Class

Client
Service Class

Unexpected
Subclass

LSP Related Heuristic

¿  NOP = a method that does nothing
¿  Solution: Extract Common Base-Class

¿  If both initial and derived classes have different behaviors
¿  For Penguins →

¿  Birds, FlyingBirds, Penguins

It is illegal for a derived class, to override
a base-class method with a NOP method

3. Single Responsibility Principle

Can’t you do anything right?

What’s the Issue?
Public class Customer {
 private String name;
 private String address;

 public void addCustomer(Customer c) {
 // database code goes here
 }

 public void generateReport(Customer c) {
 // set report formatting
 }
}

What does the following code do?
Public class Customer {
 private String name;
 private String address;

 public void addCustomer(Customer c) {
 // database code goes here
 }

 public void generateReport(Customer c) {
 // set report formatting
 }
}

Responsibility
1

Responsibility
2

Every time one gets changed there is a chance that the
other also gets changed because both are staying in the
same home and both have same parent. We can’t control
everything. So a single change leads to double testing (or
maybe more).

OVERLOAD Kills

What is SRP?

¿  Software Module – Class, Function, etc.
¿  Reason to Change – Responsibility

Every software module should have only one
reason to change

R. Martin

Solution which will not violate SRP
Public class Customer {
 private String name;
 private String address;
 // setter and getter methods
}

public class CustomerDB {
 public void addCustomer(Customer c) {
 // database login goes here
 }
}

public class CustomerReport {
 public void generateReport(Customer c) {
 // set report formatting
 }
}

Can a single class has multiple methods?
¿  YES!
¿  The class responsibility is described at a higher level, or

is related to the context
public class CustomerDB {
 public void addCustomer(Customer c) {
 // database logic goes here
 }
 public Customer getCustomer(String name) {

 // database logic goes here
 }
}

public class CustomerReport {
 public void generateReport(Customer c) {
 // set report formatting
 }
 public void persistReport(Custerom c) {
 // save report in disk
 }
}

Methods should follow SRP, too

It does too many things:
1.  Build database connection
2.  Form parameters
3.  Generate command

Methods should follow SRP, too

Rule: Keep It Simple Stupid

4. Interface Segregation Principle

Really World Comparison

Report Management System

IReportBAL is used by all the 3
components:
1.  EmployeeUI
2.  ManagerUI
3.  AdminUI

The Problem

Everytime “objBal” is typed, all
the methods will be shown,
which is not always necessary:

What is ISP?

¿  Keep the interfaces concise and small

Clients should not be forced to depend upon
interfaces that they do not use.

R. Martin

Interface Segregation

Interface Segregation

5. Dependency Inversion Principle

Dependency Inversion Principle

¿  OCP states the goal; DIP states the mechanism
¿  A base class in an inheritance hierarchy should not know any

of its subclasses
¿  Modules with detailed implementations are not depended

upon, but depend themselves upon higher abstractions

I. High-level modules should not depend on low-level
module implementations. Both levels should depend
on abstractions

II. Abstractions should not depend on details
 Details should depend on abstractions

R. Martin, 1996

Dependency Inversion Principle

¿  Dependency Inversion is the strategy of depending upon
interfaces or abstract functions and classes, rather than
upon concrete functions and classes

¿  Every dependency in the design should target an
interface, or an abstract class. No dependency should
target a concrete class

DIP Applied on Example

Copy

Reader Writer

Keyboard
Reader

Printer
Writer

Disk
Writer

class Reader {

 public:

 virtual int read()=0;

};

class Writer {

 public:

 virtual void write(int)=0;

};

void Copy(Reader& r, Writer& w){

 int c;

 while((c = r.read()) != EOF)

 w.write(c);

}

Java I/O

DIP Related Heuristic

¿  Use inheritance to avoid direct bindings to classes:

Program to interface,
Not implementation!

Client

Interface
(abstract class)

Implementation
(concrete class)

Design to an Interface
¿  Abstract classes/interfaces:

¿  Tend to change much less frequently

¿  Exceptions
¿  Some classes are very unlikely to change;

¿  Therefore, little benefit to inserting abstraction layer
¿  e.g., String class

¿  In cases like this you can use concrete class directly
¿  As in Java or C++

DIP Related Heuristic

¿  Avoid structures in which higher-level layers depend on
lower-level abstractions:
¿  In example below, Policy layer is ultimately dependant on

Utility layer

Avoid Transitive Dependencies

Policy
Layer

Mechanism
Layer

Utility
Layer

Depends on Depends on

Solution to Transitive Dependencies

¿  Use inheritance and abstract ancestor classes to
effectively eliminate transitive dependencies:

Policy
Layer

Mechanism
Layer

Utility
Layer

depends on

depends on Utility
Interface

Mechanism
Interface

DIP in Action – Google Guice
¿  Google Guice Demo
¿  https://github.com/google/guice

My Social App

¿  Integrate different social apps
¿  Send messages
¿  Get news feed

DIP in Action – Android Dagger
¿  Square Dagger Demo
¿  http://square.github.io/dagger/

