
CS356 Object-Oriented Design and Programming
http://cs356.yusun.io
October 24, 2014

Yu Sun, Ph.D.
http://yusun.io
yusun@csupomona.edu

Overview of Design Patterns

Acknowledgement
¿  Part of the presentation is based on Prof. Douglas

Schmidt’s lecture materials on patterns and software
design

¿  http://www.dre.vanderbilt.edu/~schmidt/

Overview

¿  Motivate the importance of design experience &
leveraging recurring design structure in becoming a
master software developer

Becoming a Master
¿  Experts perform differently than beginners

¿  Unlike novices, professional athletes, musicians & dancers
move fluidly & effortlessly, without focusing on each
individual movement

Becoming a Master
¿  When watching experts perform, it’s easy to forget how

much effort they’ve put into reaching high levels of
achievement

Becoming a Master
¿  Continuous repetition & practice are crucial to success

Ted Talk: The Skill of Self Confidence
Dr. Ivan Joseph

Becoming a Master
¿  Mentoring from other experts is also essential to

becoming a master

Becoming a Master Software Developer
¿  Knowledge of programming languages is necessary, but

not sufficient

Becoming a Master Software Developer
¿  Knowledge of programming languages is necessary, but

not sufficient
¿  e.g., “Best one-liner” from 2006 “Obfuscated C Code”

contest

¿  This program pints out the time when it was compiled!

•  http://www.ioccc.org/

Becoming a Master Software Developer
¿  Software methods emphasize design notations, such as

UML
¿  Fine for specification & documentation
¿  e.g., omits mundane implementation details & focuses on

relationships between key design entities

Becoming a Master Software Developer
¿  But good software design is more than drawing diagrams

¿  Good draftsmen/artists are not necessarily good architects!

Becoming a Master Software Developer
¿  Bottom-line: Master software developers rely on design

experiences

Where should design experience reside?
¿  Well-designed software exhibits recurring structures &

behaviors that promote
¿  Abstraction
¿  Flexibility
¿  Reuse
¿  Quality
¿  Modularity

Where should design experience reside?
¿  Well-designed software exhibits recurring structures &

behaviors that promote

¿  Therein lies valuable
 design knowledge

Where should design experience reside?

¿  Unfortunately, this design knowledge is typically located in:
¿  The heads of the experts

Where should design experience reside?

¿  Unfortunately, this design knowledge is typically located in:

¿  The bowels of the source code

Where should design experience reside?
¿  Unfortunately, this design knowledge is typically located in:

¿  The heads of the experts
¿  The bowels of the source code

¿  Both locations are fraught with danger!

Where should design experience reside?
¿  What we need is a

means of extracting,
documenting,
conveying, applying, &
preserving this design
knowledge without
undue time, effort, &
risk!

Key to Mastery: Knowledge of Software Patterns
¿  Describe a solution to a common problem arising

within a context

What is a Pattern? The “Alexandrian” Definition

Each pattern describes a problem
which occurs over and over again in our environment,

and then describes
the core of the solution to that problem,

in such a way that
you can use this solution a million times over,

without ever doing it the same way twice

C. Alexander, “The Timeless Way of Building”, 1979

Design Patterns
¿  “A design pattern systematically names, motivates, and

explains a general design that addresses a recurring
design problem in object-oriented systems. It describes
the problem, the solution, when to apply the solution,
and its consequences. It also gives implementation hints
and examples. The solution is a general arrangement of
objects and classes that solve the problem. The solution
is customized and implemented to solve the problem in a
particular context.” – [GoF]

Common Characteristics of Patterns

¿  They describe both a thing & a
process
¿  The “thing” (the “what”) typically

means a particular high-level design
outline or description of code detail

¿  The “process” (the “how”) typically
describes the steps to perform to
create the “thing”

Common Characteristics of Patterns

¿  They can be independent
of programming languages
& implementation
techniques

Common Characteristics of Patterns

¿  They define “micro-architectures”
¿  recurring design structure

Common Characteristics of Patterns

¿  They define “micro-architectures”
¿  Certain properties may be modified for particular

contexts

Common Characteristics of Patterns

¿  They define “micro-architectures”
¿  Certain properties may be modified for particular

contexts

Common Characteristics of Patterns
¿  They aren’t code or concrete

designs, so they must be
reified and applied in
particular languages

•  Observer pattern in Java

Common Characteristics of Patterns
¿  They aren’t code or concrete

designs, so they must be
reified and applied in
particular languages

•  Observer pattern in C++

Common Characteristics of Patterns
¿  They are not methods but can be used as an

adjunct to methods
¿  Rational Unified Process
¿  Agile
¿  Others

Common Characteristics of Patterns

¿  There are also patterns for organizing effective
software development teams and navigating
other complex settings

What Makes it a Pattern? A pattern must…

¿  …solve a problem
¿  It must be useful

¿  …have a context
¿  It must describe where the solution can be used

¿  …recur
¿  Must be relevant in other situations; rule of three

¿  ... teach
¿  Provide sufficient understanding to tailor the solution

¿  ... have a name
¿  Referred consistently

GoF Form of a Design Pattern

¿  Pattern name and classification
¿  Intent

¿  What does pattern do

¿  Also known as
¿  Other known names of pattern (if any)

¿  Motivation
¿  The design problem

¿  Applicability
¿  Situations where pattern can be applied

¿  Structure
¿  A graphical representation of classes in the pattern

GoF Form of a Design Pattern

¿  Participants
¿  The classes/objects participating and their responsibilities

¿  Collaborations
¿  Of the participants to carry out responsibilities

¿  Consequences
¿  Trade-offs, concerns

¿  Implementation
¿  Hints, techniques

¿  Sample code
¿  Code fragment showing possible implementation

GoF Form of a Design Pattern

¿  Known uses
¿  Patterns found in real systems

¿  Related patterns
¿  Closely related patterns

Why are Patterns Important?
¿  “Patterns provide an incredibly dense means of efficient and

effective communication between those who know the
language.” – [Nate Kirby]

¿  “Human communication is the bottleneck in software
development. If patterns can help developers communicate
with their clients, their customers, and each other, then
patterns help fill a crucial need in our industry.” – [Jim
Coplien]

¿  “Patterns don’t give you code you can drop into your
application, they give you experience you can drop into your
head.” – [Patrick Logan]

¿  “Giving someone a piece of code is like giving him a fish;
giving him a pattern is like teaching him to fish.” – [Don
Dwiggins]

Reuse Benefits

¿  Mature engineering disciplines have handbooks of
solutions to recurring problems
¿  All certified professional engineers in these fields have been

trained in the contents of these handbooks

¿  In an experiment, teams of leading çfrom five New
England medical centers observed one another’s
operating room practices and exchanged ideas about
their most effective techniques. The result?
¿  A 24% drop in their overall mortality rate for coronary

bypass surgery = 74 fewer deaths than predicted

Patterns to help with design changes…

Designing for Change – Causes for Redesign (I)

¿  Creating an object by specifying a class explicitly
¿  Commits to a particular implementation instead of an

interface
¿  Can complicate future changes
¿  Create objects indirectly
¿  Patterns: Abstract Factory, Factory Method, Prototype

¿  Dependence on specific operations
¿  Commits to one way of satisfying a request
¿  Compile-time and runtime modifications to request

handling can be simplified by avoiding hard-coded requests
¿  Patterns: Chain of Responsibility, Command

Causes for Redesign (II)

¿  Dependence on hardware and software platform
¿  External OS-APIs vary
¿  Design system to limit platform dependencies
¿  Patterns: Abstract Factory, Bridge

¿  Dependence on ob jec t represen ta t ions or
implementations
¿  Clients that know how an object is represented, stored,

located, or implemented might need to be changed when
object changes

¿  Hide information from clients to avoid cascading changes
¿  Patterns: Abstract Factory, Bridge, Memento, Proxy

Causes for Redesign (III)

¿  Algorithmic dependencies
¿  Algorithms are often extended, optimized, and replaced

during development and reuses
¿  Algorithms that are likely to change should be isolated
¿  Patterns: Builder, Iterator, Strategy, Template Method,

Visitor

¿  Tight coupling
¿  Leads to monolithic systems
¿  Tightly coupled classes are hard to reuse in isolation
¿  Patterns: Abstract Factory, Bridge, Chain of Responsibility,

Command, Facade, Mediator, Observer

Causes for Redesign (IV)

¿  Extending functionality by subclassing (can be bad)
¿  Requires in-depth understanding of the parent class
¿  Overriding one operation might require overriding another
¿  Can lead to an explosion of classes (for simple extensions)
¿  Patterns: Bridge, Chain of Responsibility, Composite,

Decorator, Observer, Strategy

¿  Inability to alter classes conveniently
¿  Sources not available
¿  Change might require modifying lots of existing classes
¿  Patterns: Adapter, Decorator, Visitor

Design Pattern Space

Purpose
Creational Structural Behavioral

Scope Class Factory Method Adapter (class) Interpreter
Template Method

Object Abstract Factory
Builder
Prototype
Singleton

Adapter (object)
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

Chain of
Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

Relations among Design Patterns

Builder

Proxy
saving state
of iteration

Memento

Adapter

Bridge

Command

Iterator

Composite

Decorator

Enumerating
children

adding
respnsibilities

to objects

composed
using

sharing
composites

Flyweight defining
grammar

Interpreter

Visitor

Chain of
Responsibility

sharing

strategies

changing skin
versus guts

Strategy

State

sharing
strategies

Mediator Observer
complex

dependency
management

Template Method

defining
algorithm´s

steps
Prototype

Abstract Factory

Singleton Facade

Factory Method

implement
using

single
instance

single
instance

configure factory
dynamically

often uses

Drawbacks of Design Patterns

¿  Patterns do not lead to direct code reuse (rather, they
enable experiential reuse)

¿  Patterns are deceptively simple
¿  Integrating patterns into a software development process

is a human-intensive activity
¿  Teams may suffer from patterns overload

When your only tool is a hammer…

¿  …all the problems look like a nail

¿  When first learning patterns, all problems begin to look
like the problem under consideration – try to avoid this!
¿  Similar to someone just learning to play chess and using the

same strategy everywhere – eventually you will get burned!

Variation-oriented Process for Applying Patterns

¿  To apply patterns successfully, software developers need to:
¿  Have broad knowledge of patterns relevant to their domains

Variation-oriented Process for Applying Patterns

¿  To apply patterns successfully, software developers need to:
¿  Have broad knowledge of patterns relevant to their domains

Variation-oriented Process for Applying Patterns

¿  To apply patterns successfully, software developers need to:
¿  Have broad knowledge of patterns relevant to their domains

Variation-oriented Process for Applying Patterns

¿  To apply patterns successfully,
software developers need to:
¿  Evaluate trade-offs & impact of using

certain patterns in their software

Variation-oriented Process for Applying Patterns

¿  To apply patterns successfully,
software developers need to:
¿  Evaluate trade-offs & impact of using

certain patterns in their software

Variation-oriented Process for Applying Patterns

¿  To apply patterns successfully,
software developers need to:
¿  Make design and implementation

decisions about how best to apply
the selected patterns

¿  Patterns may require modifications
for particular contexts

Variation-oriented Process for Applying Patterns

¿  To apply patterns successfully,
software developers need to:
¿  Make design and implementation

decisions about how best to apply
the selected patterns

¿  Patterns may require modifications
for particular contexts

Variation-oriented Process for Applying Patterns

¿  To apply patterns successfully,
software developers need to:
¿  Make design and implementation

decisions about how best to apply
the selected patterns

¿  Patterns may require modifications
for particular contexts

Variation-oriented Process for Applying Patterns

¿  To apply patterns successfully,
software developers need to:
¿  Make design and implementation

decisions about how best to apply
the selected patterns

¿  Patterns may require modifications
for particular contexts

•  John Vlissides, “To kill a singleton”
•  sourcemaking.com/design_patterns/
to_kill_a_singleton

Variation-oriented Process for Applying Patterns

¿  To apply patterns successfully,
software developers need to:
¿  Make design and implementation

decisions about how best to apply
the selected patterns

¿  Patterns may require
modifications for particular
contexts

Variation-oriented Process for Applying Patterns

¿  To apply patterns successfully,
software developers need to:
¿  Make design and implementation

decisions about how best to apply
the selected patterns

¿  Patterns may require
modifications for particular
contexts

Too little synchronization

Variation-oriented Process for Applying Patterns

¿  To apply patterns successfully,
software developers need to:
¿  Make design and implementation

decisions about how best to apply
the selected patterns

¿  Patterns may require
modifications for particular
contexts

Variation-oriented Process for Applying Patterns

¿  To apply patterns successfully,
software developers need to:
¿  Make design and implementation

decisions about how best to apply
the selected patterns

¿  Patterns may require
modifications for particular
contexts

Too much synchronization

Variation-oriented Process for Applying Patterns

¿  To apply patterns successfully,
software developers need to:
¿  Make design and implementation

decisions about how best to apply
the selected patterns

¿  Patterns may require
modifications for particular
contexts

Variation-oriented Process for Applying Patterns

¿  To apply patterns successfully,
software developers need to:
¿  Make design and implementation

decisions about how best to apply
the selected patterns

¿  Patterns may require
modifications for particular
contexts

Variation-oriented Process for Applying Patterns

¿  To apply patterns successfully,
software developers need to:
¿  Make design and implementation

decisions about how best to apply
the selected patterns

¿  Patterns may require
modifications for particular
contexts

Variation-oriented Process for Applying Patterns

¿  To apply patterns successfully,
software developers need to:
¿  Combine with other patterns &

implement/integrate with code

Summary
¿  Patterns support a variation-

oriented design process
¿  Determine which design

elements can vary
¿  Identify applicable patterns
¿  Vary patterns & evaluate trade-

offs
¿  Repeat …

Summary
¿  Seek generality, but don’t

brand everything as a pattern

Summary
¿  Articulate specific benefits and

demonstrate general
applicability
¿  Find three different existing

examples from code other
than yours!

More Pattern Information

¿  Robert C. Martin’s Chess Analogy
¿  http://www.cs.wustl.edu/~schmidt/cs242/learning.html

¿  John Vlissides’ “Top 10 Misconceptions”
¿  http://www.research.ibm.com/designpatterns/pubs/top10misc.html

¿  Seven Habits of Successful Pattern Writers
¿  http://www.research.ibm.com/designpatterns/pubs/7habits.html

¿  Brad Appleton’s “Patterns in a Nutshell”
¿  http://www.cmcrossroads.com/bradapp/docs/patterns-nutshell.html

¿  Mike Duell’s non-software examples
¿  http://www.cours.polymtl.ca/inf3700/divers/nonSoftwareExample/patexamples.html

