Overview of Design Patterns

CS356 Object-Oriented Design and Programming
http://cs356.yusun.io
October 24, 2014

-

CAL POLY POMONA

Yu Sun, Ph.D.
http://yusun.io
yusun@csupomona.edu

Acknowledgement

¢ Part of the presentation is based on Prof. Douglas
Schmidt’s lecture materials on patterns and software

design

¢ http://www.dre.vanderbilt.edu/~schmidt/

"‘ Douglas Schmidt
Fa

aaaaaaaaaaa
nnnnnnnnnn

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

A Pattern Language lor

Distributed Computing PATTE R N _0 R I E NTE D
SOFTWARE
ARCHITECTURE
m Patterns for Concurrent

and Networked Objects

i,

Overview

Motivate the importance of design experience &
leveraging recurring design structure in becoming a
master software developer

Becoming a Master

+ Experts perform differently than beginners

¢ Unlike novices, professional athletes, musicians & dancers
move fluidly & effortlessly, without focusing on each
individual movement

Becoming a Master

When watching experts perform, it’s easy to forget how
much effort they've put into reaching high levels of
achievement

Becoming a Master

+ Continuous repetition & practice are crucial to success

| will practice my modeli

technigve Z howrs eve

daq

| will practice mu modeling. technigue 2 hours every da

| wall practice my modeli
| will practice my modeli
| wall practice my modeli
| will practice my modeli
| will practice my modeli

technigve 2 hours every

‘f'e&hniac:& 2 hovrs eve
f&ohniifue, Z hours ever
technigre Z howt evel
technigve 2 hovrs eve

d

5
i
oo

| will practice my modeling. technigue 2 howrs every dal

| wall Prauﬁw my modeli
[will practice my modeli
| wall practice my modeli

technigve 2 hours every

technigre Z howrs evel

technigre 2 hovre every

d

Wi\

das,

[wAill prac«ﬁw "y mod&liné_fwhniqyo Z hows every c%
i ‘

Ted Talk: The Skill of Self Confidence
Dr. Ivan Joseph

Becoming a Master

¢ Mentoring from other experts is also essential to
becoming a master

Becoming a Master Software Developer

+ Knowledge of programming languages is necessary, but
not sufficient

- | ABrainriendly Guide
w Head First
The Java Language J

Spedification,
Third Edition

2nd Edition
Covers Java 5.0

q’;l.
Make J¢
-~

e Java Librar

............

Joshua Bloch

Effective Java

Second Edition

I CHEART> CODE.

D Sun

lava .
Java O'REILLY —

Becoming a Master Software Developer

Knowledge of programming languages is necessary, but
not sufficient

+ e.g, “Best one-liner” from 2006 “Obfuscated C Code”
contest

main(_){ “*448&&main(-~_) ;putchar(--_%64?232|-~7[
__TIME - /8%8][">'txiZ” (~z?"-48]>>";; ;====~§$::199"
[*2&8| _/64]/(_&271:8)%8&1:10) ;}

¢ This program pints out the time when it was compiled!

rrrend rrrrt L L L rrerrnd
1 1 1 K N 1

' ' " ' e "
rent ren " " ' U rrrrnt "
L ' L L L L

- http://www.ioccc.org/

Becoming a Master Software Developer

Software methods emphasize design notations, such as
UML

+ Fine for specification & documentation

¢ e.g., omits mundane implementation details & focuses on
relationships between key design entities

Becoming a Master Software Developer

¢ But good software design is more than drawing diagrams

¢ Good draftsmen/artists are not necessarily good architects!

Becoming a Master Software Developer

¢ Bottom-line: Master software developers rely on design
experiences

Where should design experience reside?

+ Well-designed software exhibits recurring structures &
behaviors that promote
+ Abstraction
+ Flexibility
+ Reuse
¢ Quality
+ Modularity
. ?Iient-side Broker , Server-side Broke:r Appiication
del! Proxy » reques;9 ' _*nvoke \ | Component
/w /I_ ser:d --\?‘ retieive melthod_1
method_2 receive << g1 send - — method_2
discover client proxy g L ! o | egister comp<]>nent

Network

Where should design experience reside?

+ Well-designed software exhibits recurring structures &
behaviors that promote

Client
Proxy
Client

7 method

method 2

Client-side Broker
|

request

discover client proxy

¢ Therein lies valuable

design knowledge

=

\

Server-side Broker

invoke

receive

|9 send -
‘ I
receive

discover

send

method_1

method_2

Application
Component

Where should design experience reside?

Client-side Broker

Server-side Broker

Client , Ll ,
| Yoy request \ invoke
Client A
method_1 |9 send --‘?- receive
£7 I I
method_2 receive << gt send e
=| discover [register
discover client proxy | a I
Network

AN

method_1

=<

method_2

Application
Component

register component

+ Unfortunately, this design knowledge is typically located in:

¢ The heads of the experts

Where should design experience reside?

Client-side Broker Server-side Broker
Client , Ll)

Application
Component

Proxy request invoke
Client 7k 1 \ | \ .
7 method_1 I% send ,_\?. receive method_1
::I I | |

method_2 receive |<< g1 send - method_2
1 |
> discover | register |<<——— !
discover client proxy | . ; register component

Network
+ Unfortunately, this design knowledge is typically located in:

+ The bowels of the source code

public class KeyGeneratorImpl extends Service ({
private Set<UUID> keys = new HashSet<UUID>():
private final KeyGenerator.Stub binder = new KeyGenerator.Stub() {
public void setCallback (final KeyGeneratorCallback callback) {
UUID id;
synchronized (keys) {
do { id = UUID.randomUUID(); } while (keys.contains(id)):;
keys.add (id) ;
}
final String key = id.toString():
try {
Log.d(getClass () .getName (), "sending key" + key);
callback.sendKey (key) ;
} catch (RemoteException e) { e.printStackTrace():; }

}

}:
public IBinder onBind(Intent intent) { return this.binder; }

Where should design experience reside?

+ Unfortunately, this design knowledge is typically located in:

¢ The heads of the experts
+ The bowels of the source code

¢ Both locations are fraught with danger!

Where should design experience reside?

+ What we need is a
means of extracting,
documenting,
conveying, applying, &
preserving this design
knowledge without
undue time, effort, &
risk!

Key to Mastery: Knowledge of Software Patterns

¢ Describe a solution to a common problem arising
within a context

Aerospace

Civil
Vobile engineering

devices

Automotive

Electronic
Irading

What is a Pattern? The “Alexandrian’ Definition

Each pattern describes a problem

which occurs over and over again in our environment,

and then describes

the core of the solution to that problem,

in such a way that

you can use this solution a million times over,

without ever doing it the same way twice

C.Alexander, “The Timeless Way of Building”, 1979

Design Patterns

“A design pattern systematically names, motivates, and
explains a general design that addresses a recurring
design problem in object-oriented systems. It describes
the problem, the solution, when to apply the solution,
and its consequences. It also gives implementation hints
and examples. The solution is a general arrangement of
objects and classes that solve the problem. The solution
is customized and implemented to solve the problem in a
particular context.” — [GoF]

Yoarcn Dx ;
Desion Patterns
Elements of Reusable
Object-Oriented Software
Erich Gam ma
Richard Helm
Ralph Johnso

ol

Common Characteristics of Patterns

¢ They describe both a thing & a
process
¢ The “thing” (the “what”) typically
means a particular high-level design
outline or description of code detalil

¢ The “process” (the “how”) typically
describes the steps to perform to
create the “thing”

Common Characteristics of Patterns

¢ They can be independent
of programming languages

et S —

The Java Programming "I;rhe C# .
. . Language, rammin
& I m PI e m e ntatl O n Fourth Edition !.a?\gguage .

techniques

Programming in

Objective-C

Programming in

A Compilete Introduction to the
Python Language

artima B Vermers.

Common Characteristics of Patterns

¢ They define “micro-architectures”

¢ recurring design structure

for all observers
in observerList do

observer.update()

Subject Observer
state * | update
observerList A
attach
det_act
notify ConcreteObserver

update

Observer pattern

Common Characteristics of Patterns

¢ They define “micro-architectures”
+ Certain properties may be modified for particular

contexts e
(" Observer (: Observer \l)
e » T e
\ | Tmm—_——— TTm== !
\ /
\ Subject Observer/
Content Content
Observable Observer
o * [onChange
observerList A

registerObserver
unregisterObserver

notifyChange (> "’g&‘:::ee':t
onChange

for all observers
in observerList do c o |
observer.onChange() oncrete |
Observer i
________ -
One use of the " Observer
Observer pattern in e - -

Android

Common Characteristics of Patterns

¢ They define “micro-architectures”

¢ Certain properties may be modified for particular

contexts

—— ———
- = -

— e ————
—_ -

(__ Observer (_ Observer)
\\ ___________ - S - — /I
; /
\ Subject Observer/

Context Broadcast

Receiver

state * | onReceive
observerList

registerReceiver
unregisterReceiver
sendBroadcast

A

BroadcastHandler

for all observers
in observerList do

observer.onReceive(

onReceive

A different use of
the Observer
pattern in Android

Concrete
Observer

e ——
—— L PSS

=~

Observer)

-
T ——— e ———

Common Characteristics of Patterns

They aren’t code or concrete

designs, so they must be
. . . public class EventHandler
reified and applied in extends Observer {

i public void update (Observable o,
particular languages Objent are)
{ /*.*%/ }

public class EventSource
extends Observable,
implements Runnable ({
public void run()

{ /*.*/ notifyObservers(/*.*/); }

EventSource eventSource =

new EventSource() ;
EventHandler eventHandler =

new EventHandler() ;
eventSource.addObserver (eventHandler) ;

Thread thread

_ = new Thread (eventSource) ;
- Observer pattern in Java thread.start () ;

Common Characteristics of Patterns

They aren’t code or concrete

designs, so they must be
reified and applied in
particular languages

- Observer pattern in C++

class Event Handler
: public Observer {
public:

virtual void update (Observable o,
Object argqg)

{ /* .. */}

class Event Source
: public Observable,
public ACE Task Base {
public:
virtual void svc()
{ /*.*/ notify observers(/*.*/); }

Event Source event source;
Event Handler event handler;

event source->add observer
(event handler) ;

Event Task task (event source);
task->activate() ;

Common Characteristics of Patterns

They are not methods but can be used as an
adjunct to methods

+ Rational Unified Process

+ Agile A glI e
Prin)3
+ Others ::1 - e E‘
THE RATIONAL
UNIFIED PROCESS
MADE EAsy
A Pracrimoner’s Guing 1o e RUP

‘ ,RUF'

Porvencd oy Gragy Booch

———_—— e

fact |H

§ WHEHT \
i ALEARICH|

Common Characteristics of Patterns

+ There are also patterns for organizing effective
software development teams and navigating
other complex settings

Organizational Patterns
of Agile Software Development

Dating Design
Patterns

Elements of Reusable
Objective-Oriented Paired Programming

James (). (oplien - Neil B Harrison

What Makes it a Pattern? A pattern must...

..solve a problem
¢ It must be useful
..have a context
¢ It must describe where the solution can be used
..recur
¢ Must be relevant in other situations; rule of three
... teach
+ Provide sufficient understanding to tailor the solution
... have a name

+ Referred consistently

GoF Form of a Design Pattern

Pattern name and classification

Intent
¢+ What does pattern do

Also known as
¢ Other known names of pattern (if any)

Motivation

¢ The design problem

Applicability

+ Situations where pattern can be applied

Structure
+ A graphical representation of classes in the pattern

GoF Form of a Design Pattern

Participants

¢ The classes/objects participating and their responsibilities
Collaborations

+ Of the participants to carry out responsibilities
Consequences

+ Trade-offs, concerns

Implementation

+ Hints, techniques

Sample code

¢ Code fragment showing possible implementation

GoF Form of a Design Pattern

Known uses
+ Patterns found in real systems
Related patterns

¢ Closely related patterns

Why are Patterns Important?

“Patterns provide an incredibly dense means of efficient and
effective communication between those who know the

language.” — [Nate Kirby]

“Human communication is the bottleneck in software
development. If patterns can help developers communicate
with their clients, their customers, and each other, then
patterns help fill a crucial need in our industry.” — [Jim
Coplien]

“Patterns don’'t give you code you can drop into your
application, they give you experience you can drop into your
head.” — [Patrick Logan]

“Giving someone a piece of code is like giving him a fish;
giving him a pattern is like teaching him to fish.” — [Don
Dwiggins]

Reuse Benefits

Mature engineering disciplines have handbooks of
solutions to recurring problems

¢ All certified professional engineers in these fields have been
trained in the contents of these handbooks

In an experiment, teams of leading ¢from five New
England medical centers observed one another’ s
operating room practices and exchanged ideas about
their most effective techniques. The result?

o A 24% drop in their overall mortality rate for coronary
bypass surgery = 74 fewer deaths than predicted

Patterns to help with design changes...

L

-

Designing for Change — Causes for Redesign (l)

Creating an object by specifying a class explicitly
¢ Commits to a particular implementation instead of an
interface

+ Can complicate future changes
+ Create objects indirectly

¢ Patterns: Abstract Factory, Factory Method, Prototype
Dependence on specific operations
+ Commits to one way of satisfying a request

¢ Compile-time and runtime modifications to request
handling can be simplified by avoiding hard-coded requests

¢ Patterns: Chain of Responsibility, Command

Causes for Redesign (ll)

Dependence on hardware and software platform

+ External OS-APIs vary

¢ Design system to limit platform dependencies

+ Patterns: Abstract Factory, Bridge

Dependence on object representations or
implementations

¢ Clients that know how an object is represented, stored,
located, or implemented might need to be changed when
object changes

+ Hide information from clients to avoid cascading changes

+ Patterns: Abstract Factory, Bridge, Memento, Proxy

Causes for Redesign (lll)

Algorithmic dependencies

¢ Algorithms are often extended, optimized, and replaced
during development and reuses

+ Algorithms that are likely to change should be isolated

¢ Patterns: Builder, Iterator, Strategy, Template Method,
Visitor

Tight coupling

+ Leads to monolithic systems

+ Tightly coupled classes are hard to reuse in isolation

+ Patterns: Abstract Factory, Bridge, Chain of Responsibility,
Command, Facade, Mediator, Observer

Causes for Redesign (1V)

Extending functionality by subclassing (can be bad)
+ Requires in-depth understanding of the parent class
+ Overriding one operation might require overriding another
¢ Can lead to an explosion of classes (for simple extensions)
¢

Patterns: Bridge, Chain of Responsibility, Composite,
Decorator, Observer, Strategy

Inability to alter classes conveniently
+ Sources not available
+ Change might require modifying lots of existing classes

+ Patterns: Adapter, Decorator, Visitor

Design Pattern Space

Purpose
Creational Structural Behavioral
Scope Class Factory Method Adapter (class) Interpreter
Template Method
Object Abstract Factory Adapter (object) Chain of

Builder
Prototype
Singleton

Bridge
Composite
Decorator
Facade
Flyweight
Proxy

Responsibility
Command
Iterator
Mediator
Memento
Observer
State

Strategy
Visitor

Relations among Design

Memento

saving stat
of iteration

Builder

Iterator

Enumerating

children
Composite
adding
respnsibilities i
Decorator j shanng
to objects composites

Patterns

Proxy
Adapter
< Command |

changing skin defini -
. efining Chain of
versus guts Flyweight grammar Responsibility
s - Visitor
S QOO
, s, | 2@
sharing h},é >y Interpreter ov
strategies % ‘ complex
Mediator | dependency Observer
management

defining

:I Factory Method |

algorithm’s
Template Method often uses
B _single Abstract Factory 2 Sing
. il molaricc
Singleton | single Facade

instance

Drawbacks of Design Patterns

Patterns do not lead to direct code reuse (rather, they
enable experiential reuse)

Patterns are deceptively simple

Integrating patterns into a software development process
is 2 human-intensive activity

Teams may suffer from patterns overload

When your only tool is a hammer...

...all the problems look like a nail

When first learning patterns, all problems begin to look
like the problem under consideration — try to avoid this!

¢ Similar to someone just learning to play chess and using the
same strategy everywhere — eventually you will get burned!

Variation-oriented Process for Applying Patterns

+ To apply patterns successfully, software developers need to:
+ Have broad knowledge of patterns relevant to their domains

Design Patterns

Elements of Reusable

L]

Chain of

Facade

Responsibility

Object (Servant)

Bridge
N ;
Client in an
K operation
) = Sy
S
O
2
&
IDL ORB
2L J [ST UBSJ [INTERFACE
ORB CORE
Proxy

(

Object Adapter

| Aaapter |

GIOP/1IOP/ESIOPS

Variation-oriented Process for Applying Patterns

+ To apply patterns successfully, software developers need to:

+ Have broad knowledge of patterns relevant to their domains

Design Patterns: Abstraction and Reuse of
Object-Oriented Design

Brich Camma®, Rickaod Belmn®, Ralph Jobonon’, Joba Vimides'

' Takgent, lne
10735 N De Ansn Bk, Oupertins, CA $5014.3000 USA
T LM Thomas J. Wateen Nasnrch Coater
PO Bon ™, Yorktown Beighta, NY 10008 USA
' Departamat of Computes Scince
Usiverwty of Biscw v Urbaza-Chazpugs
1096 W Springheld Ave, Urbasa, B 41300 USA

Abuiract. We propess deslgn patterns s & sew medhanim o
anpresnng shjectameniod dengn expemence Dasign patterns idetly,
R, wnd Ahetinet commman Dhrmnen in himitsniontod deage. They cap
tare the ixbemt bekind & design by identifying objecws, ther colabers-

Iv

Design Patterns

won vocsbulary for dewga, they teduce ywem complenty by samog

Elements of Reusable e e S o i Ve e v e
Object-Oriented Software P el W) BRI O BT BT,
deniribe how 85 exgoem and coganise design pabberne and mtooduce & 5 S

Erich Gammal enlaleg of dusign potienss. We alee duvcsibe our expusieace in applring

Richard Helm
Ralph Johnson
John Viissides

" i

dragn palierns s the deoign of shiertarmaiod spsiene ") UJ I ’J_/ w1 'J_l
- (E
1 Istroduction _‘JJJ_!.] .r. .lj._ln _[j

Design methods are supposd to pramete goad design, te teach new desip
Bow 1o design well, and Lo slandasdiae the way designs are deveoped. Typic
a denign mathod compriess & st of rystactic sotations (sesally graphical) an 1 ey
wet of 1ues Bhat gurern how and when 1o use sk potativn. I6 will als desed J

problerrs that sccur in & dexiga, bow 1o fix therm, and bow to evaluste & dex
Stodie of apet foe 1l Somwever, bave abd
that knowledge s not coganined simply sround syreax, bot in larger conepd
slraciuses such s algarithens, dala siruchares and idhoern (1, 7, 9, 27], and pd
that lndicale sieps secomary to fulfll & pacticaler ol [26]. 3 be lbely that
sigzers do not think abost the notation they are uaing for recording the desd

Rather, they look for patterns to match againet plase, algerithms, data stof
o i e el sty B .|

W 4
© Wark parformed wide ot UBILAD, Usiow Bash of Smiarniond, Tarnch, Switseslyd
‘g

Verlag

7

Design-Muster

Klassenbibliothek

Foreawerd by Grady Booch

U0V Naaminrss (00 5 BOCKP WA LNCR 20T, p S0 01, 190
Nprmnger. Vartag odn Hakabany 1991

Variation-oriented Process for Applying Patterns

+ To apply patterns successfully, software developers need to:

+ Have broad knowledge of patterns relevant to their domains

core

ENTERPRISI
J2EE Parterns rideasonigelt

Best Pracioes and Design Stemeghes

-

PATTERNS

&

; Doug Lea
\()ll“dl(‘ Programming in Java™
PATTERN-ORIENTED S Second Edition
SOFTWARE lk\im Pﬂtupk's and Patterns
ARCHITECTURE The Jaa

PATTERNS FOR
FAULT TOLERANT

3 SOFTWARE

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

llllllll 0d Pamers Lasemses

‘o
.
ol

....... S,

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

...........

SECURITY
PATTERNS

PATTERNS FOR
PARALLEL SOFTWARE
DESIGN

PATTERN-ORIENTED

SOFTWARE
ARCHITECTURE SERVER
A raes '"": - COMPONENT
PATTERN-ORIENTED S PATTERNS
SOFTWARE i =

ARCHITECTURE
K Faneres o con

Variation-oriented Process for Applying Patterns

¢ To apply patterns successfully,
software developers need to:

+ Evaluate trade-offs & impact of using
certain patterns in their software

Variation-oriented Process for Applying Patterns

¢ To apply patterns successfully,

software developers need to:

+ Evaluate trade-offs & impact of using
certain patterns in their software

AbstractClass

TemplateMethod() ©--
Primitive Operation1()
Primitive Operation2()

ﬁ.rimitiveOperation 1()

b}imitiveOperation2()

;

Template ?
ConcreteClass Method
|
PrimitiveOperation1() pa f f ern
PrimitiveOperation2()
TN e —— TN e —
\ N \ - \\
/" OPTIONS /) GEN |
\ . \ |
? TRl
\
- Sl
Context Strategy \/ " Kev
<> -
- v LIST ¢ P
contextinterface() algorithminterface() - \\,) S Q\ | R
. READ | S -~ BOOL
\ / ~
BUFFER | \
\ > ; X (, HASH | .i\RRA/Y/
~ - / ~ -
Strateqy | I I \ TABLE |
p 3 f fe rn ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC o
algorithminterface() algorithminterface() algorithminterface()

Variation-oriented Process for Applying Patterns

To apply patterns successfully,
software developers need to:

¢ Make design and implementation
decisions about how best to apply
the selected patterns

+ Patterns may require modifications
for particular contexts

Subject Observer
state * | update
observerList A
attach
detact
notn‘yﬂ) ConcreteObserver

for all observers
in observerList do
observer.update()

update

The Observer Pattern

Variation-oriented Process for Applying Patterns

¢ To apply patterns successfully,
software developers need to:

¢ Make design and implementation
decisions about how best to apply
the selected patterns

+ Patterns may require modifications
for particular contexts

— -

\“\‘_ p—— e

—— —

\
\ Subject Observer,
Content Content
Observable Observer
ST * | onChange
observerList A

registerObserver
unregisterObserver
notifyChange O

MyContent
Observer

for all observers
in observerList do
observer.onChange()

onChange

One use of the
Observer Pattern in
Android

Concrete
Observer

o ——————
-—
— -

O
o
2]
@
2
@
=
AN

T ————————

|
|
|
N
/

Variation-oriented Process for Applying Patterns

¢ To apply patterns successfully,
software developers need to:

¢ Make design and implementation
decisions about how best to apply
the selected patterns

+ Patterns may require modifications
for particular contexts

-— - —_ -

(" Observer (__ Observer _J
\\ e ————— - T Y
\ /
\ Subject Observer/’
Broadcast
Context .
Receiver
N)
state onReceive
observerList A

registerReceiver
unregisterReceiver

sendBroadcast O BroadcastHandler

onReceive

for all observers

in observerList do :

. Concrete
observer.onReceive(|
Observer !
|
——— - |
, P i —|
A different use of " Observer

the Observer S - -
Pattern in Android

Variation-oriented Process for Applying Patterns

To apply patterns successfully,
software developers need to:

¢ Make design and implementation
decisions about how best to apply
the selected patterns

+ Patterns may require modifications
for particular contexts

Singleton

If (uniquelnstance == 0)

static instance() ©---4---{ uniquelnstance =
new Singleton;

singletonOperation() return uniguelnstance;

getSingletonData()

static uniquelnstance

singletonData Singleton pattern

- John Vlissides, “To kill a singleton”

* sourcemaking.com/design_patterns/
to_kill_a_singleton

Variation-oriented Process for Applying Patterns

To apply patterns successfully,
software developers need to:

+ Make design and implementation | singleton I (oniquelnstance == 0)

decisions about how best to apply | staticinstance() ©---1--- ““f:ﬁ';f;g;;ﬁ:
singletonOperation() t iquelnstan: ;

the selected patterns getSingletonData() return uniquelnstance

+ Patterns may require static uniquelnstance Sinaleton pattern v

df : : singletonData ge 0 pa e S.

modifications for particular Double-Checked
contexts Locking Pattern

class Singleton ({
private static Singleton inst = null;
public static Singleton instance() {
Singleton result = inst;
if (result == null) {
inst = result = new Singleton() ;

}

return result;

}

Variation-oriented Process for Applying Patterns

To apply patterns successfully,
software developers need to:

+ Make design and implementation | singleton I (oniquelnstance == 0)

decisions about how best to apply | staticinstance() ©---1--- ““:?:j'gﬁfg,’;‘iﬁ:
singletonOperation() t iquelnstan: ;

the selected patterns getSingletonData() return uniqueinstance

+ Patterns may require static uniquelnstance Sinalet tH

- £ : : singletonData ge on pa ern vs.

modifications for particular Double-Checked
contexts Locking Pattern

class Singleton ({
private static Singleton inst = null;
public static Singleton instance() {
]]] Singleton result = inst;
Too little synchronization if (result == null) {
inst = result = new Singleton() ;

}

return result;

}

Variation-oriented Process for Applying Patterns

To apply patterns successfully,
software developers need to:

+ Make design and implementation | singleton I (oniquelnstance == 0)
decisions about how best to apply static instance() ©---1---1 un:?::lgfrzglr;ﬁr:
the selected patterns eSnaeonbatal return uniquelnstance;

+ Patterns may require static uniquelnstance .
modifications for particular singletonData SI/Z%?ZZ_@ZZ?;Z;S
contexts Locking Pattern

class Singleton {
private static Singleton inst = null;
public static Singleton instance() {
synchronized(Singleton.class) ({
Singleton result = inst;
if (result == null) {
inst = result = new Singleton();

}
}

return result;

Variation-oriented Process for Applying Patterns

To apply patterns successfully,
software developers need to:

+ Make design and implementation | singleton I (oniquelnstance == 0)

decisions about how best to apply | staticinstance() o---4---{ UMaelitene=
singletonOperation() '

the selected patterns getSingletonDatal) TOUNT) WqUBinStance:
¢ Patterns may require tatic uniquelnst .
i yf quire I gngeimbsts Singleton pattern vs.
contexts Locking Pattern

class Singleton {
private static Singleton inst = null;
public static Singleton instance() {
Too much synchronization synchronized (Singleton.class) {
Singleton result = inst;
if (result == null) {
inst = result = new Singleton();

}
}

return result;

Variation-oriented Process for Applying Patterns

+ To apply patterns successfully,
software developers need to:

+ Make design and implementation | singleton I (oniquelnstance == 0)
decisions about how best to apply static instance() ©---1---1 un:?:vslgisr:agllr;ﬁr:
the selected patterns Senaenbatal. return uniquelnstance;

+ Patterns may require static uniquelnstance .
modifications for particular singletonData Sl,g;igg_@igﬁ;ggs'
contexts Locking Pattern

class Singleton {

private static volatile Singleton
inst = null;
Singleton instance () ({

synchronized(Singleton.class) {
result = inst;
if (result == null)
{ inst = result = new Singleton(); }
}
Just right amount of synchronization ietum result:

Variation-oriented Process for Applying Patterns

+ To apply patterns successfully,
software developers need to:

+ Make design and implementation | singleton I (oniquelnstance == 0)
decisions about how best to apply static instance() ©---1---1 un:?:vslgisr:agllr;ﬁr:
the selected patterns Senaenbatal. return uniquelnstance;

+ Patterns may require static uniquelnstance .
modifications for particular singletonData Sl,g;igg_@igﬁ;ggs'
contexts Locking Pattern

class Singleton {
private static volatile Singleton
inst = null;
public static Singleton instance() {
Singleton result = inst;
if (result == null) {
synchronized (Singleton.class) {
result = inst;
if (result == null)
{ inst = result = new Singleton(); }
}

; . . }
Only synchronizes when inst is null return result;

Variation-oriented Process for Applying Patterns

+ To apply patterns successfully,
software developers need to:

+ Make design and implementation | singleton I (oniquelnstance == 0)
decisions about how best to apply static instance() ©---1---1 un:?:vslgisr:agllr;ﬁr:
the selected patterns Senaenbatal. return uniquelnstance;

+ Patterns may require static uniquelnstance .
modifications for particular singletonData Sl,g;igg_@igﬁ;ggs'
contexts Locking Pattern

class Singleton {
private static volatile Singleton
inst = null;
public static Singleton instance () ({
Singleton result = inst;
if (result == null) {
synchronized (Singleton.class) {
result = inst;
if (result == null)
{ inst = result = new Singleton(); }
}

y . }
No synchronization after inst is created return result;

Variation-oriented Process for Applying Patterns

+ To apply patterns successfully,
software developers need to:

+ Combine with other patterns &
implement/integrate with code , - ModelNiew ~ | , = Présentation ~, o~ =~~~

« Controller _' ‘. Abstraction-Control = 'ohared Repository

-~ T ~, ,~ HalfObject ~, -~ ~~
/ \
.« Iterator P /\ _plus Protocol /‘ ’_ Interceptor)
~ “Replicated” ~, , -~~~ T~ - Tomponent ~
4 \
~Component Group, '\ _ Mediator . ‘L Configurator _
-7 "7~ - “Database” ~
/ \ / \
.~ ‘Layers— _~ '\ _Accesslayer .
|
change
notification
High pattern J/
density JU—

~

-
. Observer

~ - 7
notification state
interface transfer

¥ N\

, = Explicit > ,~ " Data "~
~ Interface - ~ Iransfer Objeg -

-~

Summary

+ Patterns support a variation-
oriented design process

*

Determine which design
elements can vary

: : / Pattern
|dentify applicable patterns e /
Vary patterns & evaluate trade-
offs

Repeat coe |mp|ement
& Integrate Trade-off
Patterns & Analysis

Summary

+ Seek generality, but don’t
brand everything as a pattern

,"/

Summary

+ Articulate specific benefits and
demonstrate general
applicability

+ Find three different existing

examples from code other
than yours!

More Pattern Information

Robert C. Martin’ s Chess Analogy
+ http://lwww.cs.wustl.edu/~schmidt/cs242/learning.html
John Vlissides” “Top 10 Misconceptions”

+ http://www.research.ibm.com/designpatterns/pubs/top | Omisc.html

Seven Habits of Successful Pattern Writers

+ http://www.research.ibm.com/designpatterns/pubs/7habits.html

Brad Appleton’ s “Patterns in a Nutshell”

+ http://www.cmcrossroads.com/bradapp/docs/patterns-nutshell.html

Mike Duell’ s non-software examples

+ http://www.cours.polymtl.ca/inf3700/divers/nonSoftwareExample/patexamples.html

