Singleton Pattern

CS356 Object-Oriented Design and Programming
http://cs356.yusun.io
October 27, 2014

-

CAL POLY POMONA

Yu Sun, Ph.D.
http://yusun.io
yusun@csupomona.edu

GoF Form of a Design Pattern

The Pattern Name

+ Pattern name and classification, Intent, and
Also-Known-As

The Problem
+ Motivation, and Applicability
The Solution

¢ Structure (graphical), Participants (their classes/ objects/
responsibilities), Collaborations (of the participants),
Implementation (hints, techniques), Sample code, Known
uses, and Related patterns

The Consequences
+ Consequences (trade-offs, concerns)

Creational Patterns

Concerns the process of object creation

Will cover Will not cover
¢ Abstract Factory / + Builder

+ Singleton

Structural Patterns

Deals with composition of classes or objects

Will cover Will not cover
+ Adapter + Bridge

+ Fagade + Flyweight

+ Composite

¢ Decorator

+ Proxy

Behavioral Patterns

Characterizes the ways in which classes or objects
interact and distribute responsibility

Will cover Will not cover
+ Visitor ¢ Interpreter
¢ Observer ¢ lterator
+ Strategy + Mediator
¢ Command + Memento
¢ Chain of Responsibility + State

¢+ Template

Creational Patterns

Abstract the instantiation process
+ Make a system independent of how its objects are created,
composed, and represented

Important if systems evolve to depend more on object
composition than on class inheritance
¢ Emphasis shifts from hardcoding fixed sets of behaviors

towards a smaller set of composable fundamental
behaviors

Encapsulate knowledge about the concrete classes that a
system uses

Hide how instances of classes are created and put
together

Basic Definitions

Instantiation

¢ The creation of an object from a class

Abstract Class
¢ Defines 2a common interface for its subclasses

+ Defers some implementation to its subclasses
+ Cannot be instantiated

Concrete Class

+ Classes which can be instantiated

Singleton Pattern

Singleton

Intent

¢ Ensure a class has only one instance and provide a global
point of access to it; class itself is responsible for sole
instance

Applicability

+ Woant exactly one instance of a class

¢ Accessible to clients from one point

¢ Can also allow a countable number of instances
4

Global namespace provides a single object, but does not
prevent other objects of the class from being instantiated

When do we need a Singleton?

(25)(z3)(23
?')/e}

=R

g:)’ 0

2

=2
\.E\}I\

L
- |

) Databé_se_bonnection

Camera API Object

User Account Management

When do we need a Singleton?

Window Manager Object

intersection

44 antenna GPS antenna
n

seat belt recog lltnon camera ~, (rear shelf)

pre-tensioner ’

heads-up display

passenger

VSA module detection camera

millimeter-wave
radar ~._

wide-angle
laser radar *-_
" external camera
s, navigation
system display
" body sensor

I, » accelerator vibration system
infrared camera electric power steering

— Printer
ﬂame: \\norcomiziLexwin Eropellies. & I
Status: Ready
Type: Lexmark Optra S 1650 PS
Where: Norcomix
Comment: WinRaw Lexmark 1650 Via Samba Share [~ Print ta file
— Print range Copie:
& Al Number of copies: |1 3:

" Pages from: |1 to: I

" Selection

E@ lﬁ ¥ Callate

[o]

Cancel l

Printing Manager Object

Participants and Collaborations

Singleton

¢ Defines an getInstance method that becomes the single
"gate" by which clients can access its unique instance.

getInstance is a class method (static method)
+ May be responsible for creating its own unique instance
¢ Constructor placed in private/protected section

Clients access Singleton instances solely through the
getInstance method

Singleton

static Instance() O---q---------- retum uniguelnstance
SingletonOperation()
GetSingletonData()

static uniquelnstance
singletonData

Implementation: Ensuring a Unique Instance

public class Singleton {
private static final Singleton instance = new Singleton();

private Singleton() {}

public static Singleton getInstance() {
return instance;

}
}

Implementation: Lazy Instantiation

public class Singleton {
private static Singleton instance = null;

private Singleton() {}

public static Singleton getInstance() {

if(instance == null) {
instance = new Singleton();

}

return instance;

}
}

What if there are subclasses?

public abstract class MazeFactory {
private static MazeFactory instance = null;
private MazeFactory() {}

public static MazeFactory getInstance() {

if (instance == null)
return getInstance("enchanted"); // default instance
else

return instance;

}

public static MazeFactory getInstance(String name) {
if(instance == null)
if (name.equals(“bombed™))
instance = new BombedMazeFactory();
else if (name.equals(“enchanted"))
instance = new EnchantedMazeFactory();

return instance;

}
}

Singleton with Subclasses

Client code to create factory the first time

MazeFactory factory = MazeFactory.getInstance(“bombed") ;

Client code to access the factory

MazeFactory factory = MazeFactory.getInstance();

To add another subclass requires changing the instance()
method!

Constructors of BombedMazeFactory and
EnchantedMazeFactory can not be private

Singleton with Subclasses (ver. 2)

public class EnchantedMazeFactory extends MazeFactory {
private EnchantedmazeFactory() {}
public static MazeFactory getInstance() {
if(instance == null)

instance = new EnchantedMazeFactory();

return instance;

}
}

Client code to create factory the first time

MazeFactory factory = EnchantedMazeFactory.getInstance();

Client code to access the factory

MazeFactory factory = MazeFactory.getInstance();

Singleton Example — Load Balancer

e Managed

Forwarded e

requests

Load Balancer

o oxx Forwarded
X requests

~ |Managed
Forwarded | server

Client Request requests

Managed
server

