Composite Pattern

CS356 Object-Oriented Design and Programming

http://cs356.yusun.io
November 3, 2014

-

CAL POLY POMONA

Yu Sun, Ph.D.
http://yusun.io
yusun@csupomona.edu

Horror Nights is Great

Universal Studios

HALLOWEEN BUY
HORRORNIGHE% 1 EVENT ATTRACTIONS GALLERY VIDEOS T1CKI

P e e
' A o W "2 GARESHN Py o SRR A - A ’
ATTRACTIONS Y gy iR o E % e
B ” o w } Y » 2t 4 i s C ¢ X -
.,_».'_-‘,.‘-‘ L . i e 3 / - ‘-",.. [I N i 74
; ‘ ¥ 2 _~.-<,-“.
—
I:lhi;—gg

Terror Tram
Rides

Scare Zones

EIE Mll(lllli OEAD

sawrraerie ND OF e [INE

Design Pattern!?

MazeGame

A

” = S L oy AT
Entrance to THE WALKING DEAD
AN/ Q.uni®

Bombed Enchanted 7 a4l
MazeGame MazeGame BB S it
¥ B O o s ®m n ® 8 ® @
MazeGame
AN
Bombed Enchanted | WoalkingDead AVP DuskDawn FaceOff Crown3D
MazeGame MazeGame MazeGame MazeGame MazeGame MazeGame MazeGame

Suggestion

SEPTEMBER / OCTOBER / NOVEMBER 1:_,. ‘ = KILLER DEALNIGHTS

sU M T F sA

Thanks for a great 2014! |
See you in 2015!

Sold Out

.7" 1 ‘! »",.' ™~ N - a
LD iited Frootof L te ol mazes and rides, wcksive
VIP Herror Lounge serving dinner & drinks, VIP guide

Sold Out Sold Out Sold Out escort to the backlot mazes, and valet parking.

Problem

STl ume(_’mu
| asT TERROR TRAMN 1L4SPM

i

Solution |: Kill Time in the Line

Heads Up!.
x -

HeadsUp! ™

Hold your phone up and try to
guess the word! Your friends
will give you clues!

+ Senior Project:

Apps to help kill the time
Context-aware

Group involvement

Social

* 6 o o o

Move and exercise

Solution 2: Be Smart on Wait Times

Universal Studios Florida®

| Parade Times+| |

o Fri, Jan 07 2011

Production Central

Jimmy Neutron's Nicktoon... 5

>7. 0 Shrek 4-D

Hollywood Rip Ride Rockit™

New York

Revenge of the Mummy ™ ...

> Twister ... Ride it Out®

Not very useful inside the park

Historical data might be more
useful

Senior Project:
¢ Crawling and saving the data
+ Wait Time Prediction

+ Trip planner

Composite Pattern

CS356 Object-Oriented Design and Programming

http://cs356.yusun.io
November 3, 2014

-

CAL POLY POMONA

Yu Sun, Ph.D.
http://yusun.io
yusun@csupomona.edu

Composite

Intent

+ Compose objects into tree structures to represent part-
whole hierarchies

¢ Individual and compositions of objects treated uniformly
Applicability
+ To represent whole-part hierarchies of objects

¢ To allow clients to ignore the difference between
composition and individual objects

Motivation

Application Window

Windows &

D <:> WidgetContainers

Buttons
O S D o
O O — Text Areas
o O etc.

GUI Windows and GUI elements

+ How does the window manage with the different items!?
+ Widgets are different than WidgetContainers

Nightmare Implementation

Deal with each category of objects’ operations
individually

class window {
Buttons[] myButtons;
Menus[] myMenus;
TextAreas[] myTextAreas;
widgetContainer[] myContainers;

public void update() {
if (myButtons != null)
for (int k = 0; k < myButtons.length(); k++)
myButtons[k].refresh();
if (myMenus != null)
for (int k = 0; k < myMenus.length(Q); k++)
myMenus [k] .display(Q);
if (myTextAreas != null)
for (int k = 0; k < myTextAreas.length(Q); k++)
myTextAreas[k].refresh();
if (myContainers != null)
for (int k = 0; k < myContainers.length(Q);k++)
myContainers[k].updateElements();

Program to Interface

Uniform dealing with widget operations
But still containers are treated different
Still not sufficient

class wWindow {

WidgetContainer

GUIwidgets[] mywidgets;
widgetContainer[] myContainers;

ContainerOperations()

public void update() {
if(mywidgets != null)
for (int k = 0; k < mywidgets.length(); k++)
mywidgets[k].update();
if(myContainers != null)
for (int k = 0; k < myContainers.length(); k++)
myContainers[k].updateElements();

GUIWidget

WidgetOperations()

} Button

Menu

Text Area

Composite Pattern Solution

Encapsulate composite and simple objects behind a
common interface

Graphic

Draw()
Add(Graphic)

GetChild(int)

Remove(Graphic)

Line Rectangle Text Picture
Draw() Draw() Draw() Draw()
Add(Graphic)

Remove(Graphic)
GetChild(int)

Forall g 1in graphics
g.bDraw()

Add g to Tist of graphics]

Structure

aComposite

Client Component
Operation() aComﬂposﬁe
Add(Component)
Remove(Component)
GetChild(int) aleaf | | aleaf
Leaf Composite
Operation() Operation() forall ¢ 'ir.1 children
Add(Component) g9.0Operation()
Remove(Component)
GetChild(int)

Component class role gives a consistent interface
¢ Ledf class — Components without further sub-structure
+ Composite class — Components with multiple parts

Component

¢ Declares interface for objects in the composition
¢ Implements default behavior for components when possible

Client Component

Operation()

Add(Component)
Remove(Component)
GetChild(int)

Leaf Composite
Operation() Operation() forall g 1'r.1 children
Add(Component) g-Operation()
Remove(Component)
GetChild(int)

Composite

¢ Defines behavior for components having children

+ Stores child components

¢ Implement child-specific operations

Client Component
Operation()
Add(Component)
Remove(Component)
GetChild(int)
Leaf Composite
Operation() Operation() > - —

Add(Component)
Remove(Component)
GetChild(int)

Forwards requests to its child
components. Possibly performing
additional operations before/after

forwarding

forall g in children
g.Operation()

Leaf

+ Defines behavior for primitive objects in the composition

Client Component

Operation()
Add(Component)

Remove(Component)
GetChild(int)

Leaf Composite
Operation() Operation() forall g i n children
Add(Component) g-Operation()

Remove(Component)
GetChild(int)

Client

Manipulates objects in the composition through the

Component interface

Operation()

Add(Component)

Remove(Component)

GetChild(int)

Leaf Composite
Operation() Operation()

Add(Component)
Remove(Component)
GetChild(int)

forall g in children
g.Operation()

|

Applying Composite to Widget Problem

Component

WidgeOperations()

Button

Menu TextArea

class window {
Component[] myComponents;

public void update() {
if (myComponents != null)
for(int k = 0; k < myComponents.length(Q); k++)
myComponents[k] .update();

WidgetContainer
ContainerOperations

Component implements default behavior when possible

¢ Button, Menu, etc. override Component methods when

needed

WidgetContainer will have to override all widget

operations

Issue: Where to Place Container Operations!?

Adding, deleting, managing components in composite

+ Should they be placed in Component or in Composite!

Approach |

Client

Component
Operation()
Add(Component)
Remove(Component)
GetChild(int)
Leaf Composite
Operation() Operation()
Add(Component)
Remove(Component)
GetChild(int)

forall g in children
g.Operation()

Approach 2

Client

Component
Operation()
Leaf Composite
Operation() Operation()
Add(Component)
Remove(Component)
GetChild(int)

forall g in children
g.Operation()

Issue: Where to Place Container Operations!?

Adding, deleting, managing components in composite
+ Should they be placed in Component or in Composite!?

Pro-Transparency Approach

¢ Declaring in the Component gives all subclasses the same interface
All subclasses can be treated alike

+ Safety problem
Clients may do stupid things like adding objects to leaves

What should be the response to adding a TextArea to a button?
¢ Throw an exception!?

Pro-Safety Approach

¢ Declaring them in WidgetContainer is safer

Adding or removing widgets to non-WidgetContainers is an error

Consequences

Defines uniform class hierarchies

+ Recursive composition of objects

Make clients simple

+ Don't know whether dealing with a leaf or a composite
+ Avoids dealing in a different manner with each class
Easier to extend

+ Easy to add new Composite or Leaf classes

+ Awesome example of Open-Closed principle

Overly general design
+ Harder to restrict what type can be added

