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Command

Encapsulate requests for service from an object inside
other objects

¢ You can then manipulate the requests in various ways




Motivation

In a user interface toolkit one can specify buttons and
menu’ s that carry out actions in response to user input

+ However, the toolkit is independent of the implementation
The Command pattern lets toolkit objects make

requests of unspecified application objects by turning the
request into an object

¢ Command objects can be stored and passed around like
other objects

¢ The simplest form of Command objects can execute one
method: “Execute”



Motivation

Application

Add(Document)

Menu

Add(Menultem)

Document

Open()
Close()

Cut()

Copy()
Paste()

Menultem

Clicked()

command

command->Execute() ]

Every Menultem contains a Command object

When the Menultem
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is clicked, the Command

executed (Menultem requires no knowledge of action)

The Command stores the receiver of the request and

executes one or more operations on the receiver




OpenCommand
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Execute()
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Application application OpenCommand
Add(Document) Execute() name = AskUser();
AskUser() doc = new Document(name);

Application.Add(doc);
doc->0pen();

OpenCommand asks the user for a document name,
creates the corresponding Document object,

adds the document to the receiving application,

and opens the document



PasteCommand
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PasteCommand copies text from a clipboard into an
open document

Execute() invokes paste() on the receiving document,
supplied when PasteCommand was instantiated



Composite Commands
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MacroCommand commands
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MacroCommand executes a sequence of commands



Structure
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Command

¢ Declares the interface for executing the operation
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ConcreteCommand

¢ Binds a request with a concrete action
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Invoker

Asks the command to carry out the request
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Receiver

¢ Knows how to perform the operations associated with
carrying out a request
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Client

Creates a ConcreteCommand and sets its receiver
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Collaborations
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Client — ConcreteCommand

+ Creates and specifies receiver

Invoker stores the ConcreteCommand

ConcreteCommand invokes Receiver



Intelligence of Command Objects

"Dumb”

¢ Delegate everything to Receiver

¢ Used just to decouple Sender from Receiver
"Smart"”

¢ Find receiver dynamically

"Genius"

+ Does everything itself without delegating at all
¢ Useful if no receiver exists

¢ Let ConcreteCommand be independent of further classes



Applicability

Parameterize objects
+ Replacement for callbacks and function pointers

Specify, queue, and execute requests at different times
Support undo, redo

Support for logging changes

Separate the user interface from the actions it performs

¢ Allowing GUIl and program execution to vary
independently common



Example — Inserting into a TextArea

¢ Traditional Usage

TextArea textArea = new TextArea("Hello”);
textArea.insert("world", 6);
System.out.printin(textArea.getText());



As a2 Command Pattern

public class InsertText {

private TextArea textArea;
private String text;
private int offset;

public InsertText(TextArea target, String str, int pos) {
textArea = target;
text = str;
offset = pos;

}

public void execute() {
textArea.insert(text, offset);

}
}

TextArea textArea = new TextArea("Hello”);
InsertText insertCommand = new InsertText(textArea, "world", 6);
insertCommand.execute();

System.out.printlin(textArea.getText());



New Invocation process

Adding an Undo is easy

¢ Implement unexecute() method

public void unexecute() {
textArea.replaceRange("", offset, offset + text.length());

}



Undoable Commands

Need to store additional state to reverse execution
+ Receiver object
+ Parameters of the operation performed on receiver

¢ Oiriginal values in receiver that may change due to request

Receiver must provide operations that makes it possible for
command object to return it to its prior state

¢ E.g, delete file operation must know name of file to undelete
History list
+ Sequence of commands that have been executed

Used as LIFO with reverse-execution — undo

Used as LIFO with execution — redo
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Enable Undo

Introduce a stack (executedCommands)

public void execute(Command command) {
command.execute();
executedCommands.push(command) ;

}

public void unexecute() {
Command command = (Command)executedCommands.pop();
command.unexecute();

}



Enable Redoing an Undo

Separate stacks needed
(executedCommands and unexecutedCommands)

public void unexecute() {
Command command = (Command)executedCommands.pop();
command.unexecute();
unexecutedCommands.push(command) ;

}

public void reexecute() {
command command = (Command)unexecutedCommands.pop();
execute (command) ;

}



Consequences

Decouples Invoker from Receiver

Commands are first-class objects
+ Can be manipulated and extended

Assemble commands into a composite command

Easy to add new commands

+ Invoker does not change

¢ It is Open-Closed



