Command Pattern

CS356 Object-Oriented Design and Programming

http://cs356.yusun.io
November |3, 2014

-

CAL POLY POMONA

Yu Sun, Ph.D.
http://yusun.io
yusun@csupomona.edu

Command

Encapsulate requests for service from an object inside
other objects

¢ You can then manipulate the requests in various ways

Motivation

In a user interface toolkit one can specify buttons and
menu’ s that carry out actions in response to user input

+ However, the toolkit is independent of the implementation
The Command pattern lets toolkit objects make

requests of unspecified application objects by turning the
request into an object

¢ Command objects can be stored and passed around like
other objects

¢ The simplest form of Command objects can execute one
method: “Execute”

Motivation

Application

Add(Document)

Menu

Add(Menultem)

Document

Open()
Close()

Cut()

Copy()
Paste()

Menultem

Clicked()

command

command->Execute()]

Every Menultem contains a Command object

When the Menultem

Command

Execute()

is clicked, the Command

executed (Menultem requires no knowledge of action)

The Command stores the receiver of the request and

executes one or more operations on the receiver

OpenCommand

Command
Execute()
‘/
Application application OpenCommand
Add(Document) Execute() name = AskUser();
AskUser() doc = new Document(name);

Application.Add(doc);
doc->0pen();

OpenCommand asks the user for a document name,
creates the corresponding Document object,

adds the document to the receiving application,

and opens the document

PasteCommand

Command

Execute()

Document Document PasteCommand

8@22(()) Execute() doc->Paste()]

Cut()

Copy()
Paste()

PasteCommand copies text from a clipboard into an
open document

Execute() invokes paste() on the receiving document,
supplied when PasteCommand was instantiated

Composite Commands

Command
Execute()

‘I

MacroCommand commands

E N
XeCUte() for all ¢ in commands

c->Execute()

MacroCommand executes a sequence of commands

Structure

Client

Invoker

Receiver

Action()

receiver

Command

Execute()

ConcreteCommand

Execute()

state

receiver->Action()]

Command

¢ Declares the interface for executing the operation

Client

Invoker

Receiver

Action()

receiver

Command
Execute()

ConcreteCommand

Execute()

state

receiver->Action()]

ConcreteCommand

¢ Binds a request with a concrete action

Client

Invoker

> Command

receiver

Receiver ¢

Action()

Execute()

ConcreteCommand

Execute()

state

receiver->Action()]

Invoker

Asks the command to carry out the request

Client Command

Execute()
Receiver receiver ConcreteCommand
Action() Execute()

receiver->Action()]

state

Receiver

¢ Knows how to perform the operations associated with
carrying out a request

Client Invoker Command

Execute()

. receiver
Receiver ConcreteCommand

Action() Execute() receiver->Action()]

state

Client

Creates a ConcreteCommand and sets its receiver

Invoker

Receiver

Action()

receiver

Command

Execute()

ConcreteCommand

Execute()

state

receiver->Action()]

Collaborations

aReceiver aClient aCommand aninvoker

naw Command(aReceiver)

StoreCommand{aCommand)

| I
i 2 g

Execute()

5

Action() [

Client — ConcreteCommand

+ Creates and specifies receiver

Invoker stores the ConcreteCommand

ConcreteCommand invokes Receiver

Intelligence of Command Objects

"Dumb”

¢ Delegate everything to Receiver

¢ Used just to decouple Sender from Receiver
"Smart"”

¢ Find receiver dynamically

"Genius"

+ Does everything itself without delegating at all
¢ Useful if no receiver exists

¢ Let ConcreteCommand be independent of further classes

Applicability

Parameterize objects
+ Replacement for callbacks and function pointers

Specify, queue, and execute requests at different times
Support undo, redo

Support for logging changes

Separate the user interface from the actions it performs

¢ Allowing GUIl and program execution to vary
independently common

Example — Inserting into a TextArea

¢ Traditional Usage

TextArea textArea = new TextArea("Hello”);
textArea.insert("world", 6);
System.out.printin(textArea.getText());

As a2 Command Pattern

public class InsertText {

private TextArea textArea;
private String text;
private int offset;

public InsertText(TextArea target, String str, int pos) {
textArea = target;
text = str;
offset = pos;

}

public void execute() {
textArea.insert(text, offset);

}
}

TextArea textArea = new TextArea("Hello”);
InsertText insertCommand = new InsertText(textArea, "world", 6);
insertCommand.execute();

System.out.printlin(textArea.getText());

New Invocation process

Adding an Undo is easy

¢ Implement unexecute() method

public void unexecute() {
textArea.replaceRange("", offset, offset + text.length());

}

Undoable Commands

Need to store additional state to reverse execution
+ Receiver object
+ Parameters of the operation performed on receiver

¢ Oiriginal values in receiver that may change due to request

Receiver must provide operations that makes it possible for
command object to return it to its prior state

¢ E.g, delete file operation must know name of file to undelete
History list
+ Sequence of commands that have been executed

Used as LIFO with reverse-execution — undo

Used as LIFO with execution — redo

History List
Each circle represents a command (")-(- ()

ObjeCt 4— past commands

present

To undo, simply call unexecute()
on the most recent command

U nexecute()

present

After one more undo
9:0.0:0

4— past | future —»
To redo, execute the command to present

the right of the present context

““Execute()

present

Enable Undo

Introduce a stack (executedCommands)

public void execute(Command command) {
command.execute();
executedCommands.push(command) ;

}

public void unexecute() {
Command command = (Command)executedCommands.pop();
command.unexecute();

}

Enable Redoing an Undo

Separate stacks needed
(executedCommands and unexecutedCommands)

public void unexecute() {
Command command = (Command)executedCommands.pop();
command.unexecute();
unexecutedCommands.push(command) ;

}

public void reexecute() {
command command = (Command)unexecutedCommands.pop();
execute (command) ;

}

Consequences

Decouples Invoker from Receiver

Commands are first-class objects
+ Can be manipulated and extended

Assemble commands into a composite command

Easy to add new commands

+ Invoker does not change

¢ It is Open-Closed

