Chain of Responsibility

CS356 Object-Oriented Design and Programming

http://cs356.yusun.io
November |7, 2014

-

CAL POLY POMONA

Yu Sun, Ph.D.
http://yusun.io
yusun@csupomona.edu

Chain of Responsibility

Intent

¢ Decouple sender of a request from its receiver

By giving more than one object a chance to handle the
request

¢ Put receivers in a chain and pass the request along the
chain

Until an object handles it

Non-software Example

Rather than having a separate slot for each coin
denomination coupled with receptacle for the
denomination, a single slot is used

When the coin is dropped, the coin is routed to the

appropriate receptacle by the mechanical mechanisms
within the bank

Bank

StoreCoins ()

$0.10 $0.01

Chain of Commands

In a military or business hierarchy

¢ A request is made
¢ |t goes up the chain of command until someone has the

authority to answer the request
Very
General

General General
Specific Specific Specific Specific

Very Very Very Very Very Very
Specific Specific Specific Specific Specific Specific

Motivation

+ Context-sensitive help
¢ A help request is handled by one of several Ul objects

+ Which one!?
+ Depends on the context

¢ The object that initiates the request does not know the
object that will eventually provide the help

ren s (\pplcation Look (Office \P)) |

Ao (View memn)

Use ths command 10 change
apphcanon ook 0 Ofice \P

The Context-Help System

Application

handler
HelpHandler

_..I HandleHelp(} od----- handler->HandleHel {‘}t\

A —

Widget

: if can handle { =
Dialog Button ShowHelp()
yelse {

HandleHelp{) ©
ShowHelp()

\ Handler::HandleHelp()

Structure

Client

Handler

successor

HandleRequest()

ConcreteHandler1

ConcreteHandler2

HandleRequest()

(aClient

kaHandler

HandleRequest()

aConcreteHandler

~

~

successor e

aConcreteHandlerW

P,

SUCCEeSSOor

J

Handler

¢ Defines the interface for handling requests
+ May implement the successor link

Client Handler successor
HandleRequest()

ConcreteHandler1 ConcreteHandler2

HandleRequest() HandleRequest()

ConcreteHandler

+ Either handles the request it is responsible for ...

+ If possible

¢ ... or otherwise it forwards the request to its successor

:

Client

D Handler

HandleRequest()

A

successor

ConcreteHandler1

HandleRequest()

ConcreteHandler2

HandleRequest()

ConcreteHandler

+ Initiates the request to a ConcreteHandler object in the chain

. successor
Client Handler

HandleRequest()

ConcreteHandler1 ConcreteHandler2

HandleRequest() HandleRequest()

Applicability

More than one object may handle a request

+ Handler isn't known a priori; implicit receiver

Send a request to several objects without specifying the
receiver

Set of objects that can handle the request should be
specified dynamically

Example — Coin Handler

public class Coin {
private double weight;
private double diameter;

public Coin(double w, double d) {
weight = w;
diameter = d;

}

public double getweight() {
return weight;

}

public double getDiameter() {
return diameter;

}
}

CoinHandlerBase

public abstract class CoinHandlerBase {
protected CoinHandlerBase _successor;

public abstract void HandleCoin(Coin coin);

public void SetSuccessor(CoinHandlerBase successor) {
_successor = successor;

}

CoinHandlerBase

public class FivePenceHandler extends CoinHandlerBase {

public void HandleCoin(Coin coin) {
if (Math ahc(coin astweiaht+() - 2 28) -~ N N2

public class TenPenceHandler extends CoinHandlerBase {

S
} e public void HandleCoin(Coin coin) {

if (Math ahc(rain astweinht() - A BY ~ N NI
(public class TwentyPenceHandler extends CoinHandlerBase {

}
} Sy
1 el public void HandleCoin(Coin coin) {
if (Math ah<(coin aatweinht() - 8) -~ N N1

}

_s
} & public class FiftyPenceHandler extends CoinHandlerBase {
} Sys
} } els public void HandleCoin(Coin coin) {
‘ _su if (Math ahclrain asatweinht() -) ~ N N2
} { pubTlic class OnePoundHandler extends CoinHandlerBase {
} Sy

1 el public void HandleCoin(Coin coin) {
if (Math.abs(coin.getweight() - 9.5) < 0.02
} && Math.abs(coin.getDiameter() - 22.5) < 0.13) {
} System.out.println("Captured £1");
} } else if (_successor != null) {
_successor.HandleCoin(coin);

}
}
}

}

S

TestChain

public class TestChain {

public static void main(String[] args) {
CoinHandlerBase h5 = new FivePenceHandler();
CoinHandlerBase hl0 = new TenPenceHandler();
CoinHandlerBase h20 = new TwentyPenceHandler();
CoinHandlerBase h50 = new FiftyPenceHandler();
CoinHandlerBase h100 = new OnePoundHandler();

h5.SetSuccessor(hl0); CDUtPUt:
h10.SetSuccessor(h20); Captured 10p
h20.SetSuccessor(h50); Captured 50p

h50.SetSuccessor(h100);

Coin tenPence = new Coin(6.5, 24.49);
coin fiftyPence = new Coin(8.01, 27.31);
Coin counterfeitPound = new Coin(9, 22.5);

h5.HandleCoin(tenPence);
h5.HandleCoin(fiftyPence);
h5.HandTeCoin(counterfeitPound);

Example — Try-Catch

Example - Logging

+ Output logs to different targets based on the level

Consequences

Reduced Coupling

¢ Frees client (sender) from knowing who will handle its
request

+ Sender and receiver don't know each other
Flexibility in assigning responsibilities to objects

+ Responsibilities can be added or changed

Requests can go unhandled

+ Chain may be configured improperly

