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Chain of Responsibility

Intent

¢ Decouple sender of a request from its receiver

By giving more than one object a chance to handle the
request

¢ Put receivers in a chain and pass the request along the
chain

Until an object handles it



Non-software Example

Rather than having a separate slot for each coin
denomination coupled with receptacle for the
denomination, a single slot is used

When the coin is dropped, the coin is routed to the

appropriate receptacle by the mechanical mechanisms
within the bank
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Chain of Commands

In a military or business hierarchy

¢ A request is made
¢ |t goes up the chain of command until someone has the

authority to answer the request
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Motivation

+ Context-sensitive help
¢ A help request is handled by one of several Ul objects

+ Which one!?
+ Depends on the context

¢ The object that initiates the request does not know the
object that will eventually provide the help
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The Context-Help System
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Structure
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Handler

¢ Defines the interface for handling requests
+ May implement the successor link
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ConcreteHandler

+ Either handles the request it is responsible for ...

+ If possible

¢ ... or otherwise it forwards the request to its successor
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ConcreteHandler

+ Initiates the request to a ConcreteHandler object in the chain
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Applicability

More than one object may handle a request

+ Handler isn't known a priori; implicit receiver

Send a request to several objects without specifying the
receiver

Set of objects that can handle the request should be
specified dynamically



Example — Coin Handler

public class Coin {
private double weight;
private double diameter;

public Coin(double w, double d) {
weight = w;
diameter = d;

}

public double getweight() {
return weight;

}

public double getDiameter() {
return diameter;

}
}



CoinHandlerBase

public abstract class CoinHandlerBase {
protected CoinHandlerBase _successor;

public abstract void HandleCoin(Coin coin);

public void SetSuccessor(CoinHandlerBase successor) {
_successor = successor;

}



CoinHandlerBase

public class FivePenceHandler extends CoinHandlerBase {

public void HandleCoin(Coin coin) {
if (Math ahc(coin astweiaht+() - 2 28) -~ N N2

public class TenPenceHandler extends CoinHandlerBase {

S
} e public void HandleCoin(Coin coin) {

if (Math ahc(rain astweinht() - A BY ~ N NI
( public class TwentyPenceHandler extends CoinHandlerBase {

}
} Sy
1 el public void HandleCoin(Coin coin) {
if (Math ah<(coin aatweinht() - 8) -~ N N1

}

_s
} & public class FiftyPenceHandler extends CoinHandlerBase {
} Sys
} } els public void HandleCoin(Coin coin) {
‘ _su if (Math ahclrain asatweinht() - ) ~ N N2
} { pubTlic class OnePoundHandler extends CoinHandlerBase {
} Sy

1 el public void HandleCoin(Coin coin) {
if (Math.abs(coin.getweight() - 9.5) < 0.02
} && Math.abs(coin.getDiameter() - 22.5) < 0.13) {
} System.out.println("Captured £1");
} } else if (_successor != null) {
_successor.HandleCoin(coin);

}
}
}

}

S



TestChain

public class TestChain {

public static void main(String[] args) {
CoinHandlerBase h5 = new FivePenceHandler();
CoinHandlerBase hl0 = new TenPenceHandler();
CoinHandlerBase h20 = new TwentyPenceHandler();
CoinHandlerBase h50 = new FiftyPenceHandler();
CoinHandlerBase h100 = new OnePoundHandler();

h5.SetSuccessor(hl0); CDUtPUt:
h10.SetSuccessor(h20); Captured 10p
h20.SetSuccessor(h50); Captured 50p

h50.SetSuccessor(h100);

Coin tenPence = new Coin(6.5, 24.49);
coin fiftyPence = new Coin(8.01, 27.31);
Coin counterfeitPound = new Coin(9, 22.5);

h5.HandleCoin(tenPence);
h5.HandleCoin(fiftyPence);
h5.HandTeCoin(counterfeitPound);



Example — Try-Catch




Example - Logging

+ Output logs to different targets based on the level




Consequences

Reduced Coupling

¢ Frees client (sender) from knowing who will handle its
request

+ Sender and receiver don't know each other
Flexibility in assigning responsibilities to objects

+ Responsibilities can be added or changed

Requests can go unhandled

+ Chain may be configured improperly



