Adapter & Facade

CS356 Object-Oriented Design and Programming
http://cs356.yusun.io
November 19, 2014

Yu Sun, Ph.D.

http://yusun.io

yusun@csupomona.edu CAL POLY POMONA

Adapter

Problem

+ Have an object with an interface that’ s close to, but not
exactly, what we need

Context

+ Woant to re-use an existing class

+ Can’ t change its interface

¢ Impractical to extend class hierarchy more generally
May not have source code

Solution

¢+ Wrap a particular class or object with the interface needed

Motivation

t mateh h“"‘wbw\!'.

mu;d%b“sﬂkm
Y

The adapter implements the
interface your tlasses expect. 4o sevvite YOO

Electrical Adapter...

A Multi-Globe International Electrical Adapter - Microsoft Internet Explorer

File Edit WView Favorites Tools Help -4
e Back ~ () \ﬁ @ ‘) /fj Search i}(Favorites @A Media €2} Lj‘/ v & _;'. &S - spy] X
Address [@ http: //shop.store. yahoo.com/connectglobally /multiglobe. html v l Go | Links *
Google 'Ielec‘a’ical adapter Ll g search Wweb @¥Search Site | €@ Page Info ¥ BJUp ~ SHighlight | [@electrical [&) adapter Morton Antivirus B3 v
ELECTRICAL usB AC ADAPTERS | Browse A Category v ~
(888) 878 - 9327 24HRS
Multi-Globe International Electrical Adapter
Why buy multiple country specific adapters when you can have 1 small unit that
covers them all for one low price? The Connect Globally Multi-Globe is a
revolutionary electrical travel adapter that can be used in well over 140 countries
worldwide.
The Multi-Globe features a clever combination of fixed and swiveling pins ensuring B
the right connection every time. The unique Safe Connect sliding pin selector lets
you plug into the desired country pin configuration and leaves the remaining pins.
The lightweight and compact construction makes the Multi-Globe the one adapter
you will not want to fravel without. Designed in blue to catch your eye so you will
never leave your Multi-Globe behind.
7
1. Safe Connect sliding pin selector only allows the pins that are plugged into
the outlet to be live, leaving the remaining pins inactive.
2. Unigue swiveling pins rotate 360° to achieve the correct Country specific
outlet configuration.
For polarity specific cables and transformers a small adapter is
required which fits neatly into the Safe Connect sliding pin
selector. Item# CGEAGLOBE

|@j http: //shop.store.yahoo.com/connectglobally /acadaptors.html ® Internet

Electrical Adapter...

Client ouosy)

The Client is implemented
against the target interface.

target interface and holds an
instance of the Adaptee.

Reuse

Main goal

+ Reuse knowledge from previous experience to current
problem

+ Reuse functionality already available
Composition
+ New functionality is obtained by aggregation

+ The new object with more functionality is an aggregation of
existing components

Inheritance

+ New functionality is obtained by inheritance

Inheritance

A very similar class is already implemented that does
almost the same as the desired class implementation

Problem with implementation inheritance

¢ Some of the inherited operations might exhibit unwanted

behavior. What happens if the Stack user calls Remove()
instead of Pop()?

List

Add() o()
Remove() <:>

“Already
implemented”

Stack

Push()

Pop()

Top()

Delegation

Delegation is a way of making composition (for example
aggregation) as powerful for reuse as inheritance

¢ Instead of “inheriting from” a class, we “delegate to”
another object

In Delegation, two objects are involved in handling a
request
+ A receiving object delegates operations to its delegate

¢ The developer can make sure that the receiving object
does not allow the client to misuse the delegate object

calls delegates to
Client Receiver J Delegate

Delegation instead of Inheritance

Delegation: Catching an operation and sending it to
another object

Stack implemented by Inheritance Stack implemented by Delegation
. Stack List
List
Add0) Push() Add()
Remove() Pop() Remove()
Top()

public class Stack {

Stack protected List delegatee;
Push() public Stack() { .
delegatee = new List();
Pop() }
Top() public Object push(Object item) {

delegatee.Add(item);
}

Adapter Pattern

“Convert the interface of a class into another interface clients
expect.”

o Adapter lets classes work together that couldn’ t otherwise
because of incompatible interfaces

Used to provide a new interface to existing legacy
components (Interface engineering, reengineering)

Also known as a “wrapper”

Two adapter patterns

¢ Class adapter
Uses multiple inheritance to adapt one interface to another

+ Object adapter
Uses single inheritance and delegation

We will mostly use object adapters and call them simply
adapters

Class Adapter Pattern (Based on Multiple Inheritance)

Client Target Adaptee

Request() ExistingRequest()

Adapter

Request() \

In both adapter patterns, Client is \

unaware that an adapter is used Request() {
return ExistingRequest();

Simply makes calls to Target interface, 1
and wrapper Adapter overrides
Request with calls to legacy code

Adapter pattern (Object Adapter)

Client Target Adaptee
Request() ExistingRequest()
Adapter
Request() ‘\
Delegation is used to bind an Adapter
and an Adaptee
Interface inheritance is used to specify Request() {
the interface of the Adapter class return adaptee.ExistingRequest();
}

Target may be realized as an interface
in Java

Example of the Object Adapter Pattern

DrawingEditor e Shape — TextView
BoundingBox{) GetExtent()
CreateManipulator()
fext
Line TextShape
BoundingBox() BoundingBox() [i i retum text-=GetExtent()
CreateManipulator() CreateManipulator() o-f---- -

- == retum new TextManipulator

Class Shape and TextView

class Shape {

public:
Shape() ;
virtual void BoundingBox (Point& bottomLeft, Point& topRight);
virtual Manipulator* CreateManipulator() const;

}s;

class TextVview {
public:
TextView();
void GetOrigin(Coord& x, Coord& y);
void GetExtent(Coord& width, Coord& height);
virtual bool IsEmpty() const;

Class TextShape and Method BoundingBox

class TextShape : public Shape {
public:
TextShape(TextVview*) ;
virtual void BoundingBox(Point& bottomLeft, Point& topRight);
virtual bool IsEmpty(Q);
virtual Manipulator®* CreateManipulator();
private:
TextView* text;

};

void TextShape: :BoundingBox(Point& bottomLeft, Point& topRight) {
coord bottom, left, width, height;
text->Getorigin(bottom, left);
text->GetExtent(width, height);
bottomLeft = Point(bottom, left);
topRight = Point(bottom-height, left+width);

Adapt Enumeration to Iterator

here are any

move elements in the tollection.

Gives you the next element

ments(
in the ¢ollection. Analogous to hasMoreElements()

in the Enumeration in‘tﬂga&b
This method)us{'. tells you ik

<<interface> J \/ou'vc locked at all the items in

i the eollection.
hasNext()
next() |
mnx;no “—— Gives you the next

(\ element in the tolleetion.

RCMovcs an |£Cm
‘Fro”‘ the eolleetion.

Adapt Enumeration to lterator

m Sinte we've adapting Enumeration

to [tevator, owr Adapter

public class EnumerationIterator implements Iterator imylc-ma\{;s the [terator nterface...

{ it has 4o look like an [tevator.

Enumeration enum;

The Enumeration we've adapting,
public EnumerationIterator (Enumeration em t 3

; We've using tomposition so we stash
this.enum = enum; .) .
it in an instance vaviable.

e The [terator's hasNext() method

}

public boolean hasNext() ({ 2 dclcsa{:cd %o the Enumeration’s
: return enum.hasMoreElements(); hasMoreElements() method...
.. and the [tevator’s next() method
public Object next() { / is delegated to the Enumerations’s
return enum.nextElement () ; nextElement() method
: .
public void remove() { e Unfor-tu »ahly, we tan't support

throw new UnsupportedOperationException();

: Hevator's vemovel) method, so
: we have to punt (in other words,
we give wpl). Here we)us{: throw

an exteption.

Adapter Summary

Adapters are all about interface mapping between two
artifacts

Often, the goal is to find a "narrow" interface for
Adaptee; that is, the smallest subset of operations that
lets us do the adaptation

Pay attention to Class Adapter (Inheritance)!

Facade Pattern

Facade

Intent
+ Provides a unified interface to a set of subsystem interfaces
+ A higher-level interface making the subsystem easier to use

saTaren)
CoPlayer
ameiter
TheaterLights

geil155F
A iR

M

wWWﬂﬂMMMM

.

Screen

§8%

et

Motivating Example — Home Theater

Motivating Example — Home Theater

To watch a movie, you
need to:

© Turn on the popcorn popper

© Start the popper popping

© Dim the lights

© Put the sereen down

© Turn the projector on

O Set the projector input to PVP

© Put the projector on wide-screen mode
O Turn the sound amplifier on

© Set the amplifier to PVP input

© Set the amplifier to surround sound
® Set the amplifier volume to medium (5)

® Turn the PVP Player on
D Start the PVP Player playing

Motivating Example — Home Theater

STANDBY 0SD MENU OPEN/CLOSE
VMODE

SUBTITLE

TITLE

Motivation

Making a system into subsystems helps reduce complexity
Minimize subsystem communications and dependencies

Facade can provide a single, simplified interface to the more
general facilities of a subsystem

Client classes

/|] =

\/
7 — /)

N/

SN/

Facade

Applicability

¢ To provide a simple interface to a complex subsystem
Subsystems often get more complex as they evolve

¢ To decouple subsystem from clients and other subsystems

Promoting subsystem independence and portability

+ To layer subsystems

Define an entry point to each subsystem level
Minimize subsystem inter-dependencies

Example — Compiler Facade

Compiler
compile(s)
Lexer Parser ParseTree CodeGenerator Optimizer
getToken() generateParseTree() create() create() create()

Facade

+ Knows which subsystem classes may handle a request
¢ Delegates client requests to appropriate subsystem objects

Compiler
compile(s)

Lexer Parser ParseTree CodeGenerator Optimizer

getToken() generateParseTree() create() create() create()

Subsystem Classes

¢ Implement subsystem functionality
+ Have no knowledge of the facade

¢ i.e, keep no references to it

Compiler

compile(s)

Lexer Parser ParseTree CodeGenerator Optimizer
getToken() generateParseTree() create() create() create()

Clients communicate with the
subsystem by sending requests to
Facade, which forwards them to the
appropriate subsystem object(s)

Example: Dialog Boxes

dialogPanel

topLeft

top topRight

You must follow directions!

bottom

Top-left, Top-right, and Top Panels

dialogPanel

topLeft

JDialog dialog = new JDialog(this, "Error!", false);

newButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
// Top-Tleft panel:
JPanel topLeft = new JPanel();
topLeft.setLayout(new FlowLayout(FlowLayout.LEFT));

top topRight

topLeft.add(new JLabel(new

ImageIcon("../graphics/stopsign.jpg")));

You must follow directions!

// Top-right panel:

JPanel topRight = new JPanel();

topRight.setLayout(new BorderLayout());

€ ok) topRight.add(new

JLabel("You must follow directions!”,

JLabel.CENTER), BorderLayout.EAST);

bottom

// Top panel:

JPanel top = new JPanel();
top.setLayout(new BorderLayout(15,0));
top.add(topLeft, BorderLayout.WEST);
top.add(topRight, BorderLayout.EAST);

OK Button, Bottom and Dialog Panels

dialogPanel

topLeft

top topRight

You must follow directions!

oKy

bottom

// OK button:
JButton button = new JButton("OK");
button.setbefaultCapable(true);
getRootPane() .setbDefaultButton(button);
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
dialog.hide(Q);
}
1

// Bottom panel:

JPanel bottom = new JPanel();
bottom.setLayout(new BorderLayout());
bottom.add(button, BorderLayout.EAST);

// Dialog panel:
JPanel dialogPanel = new JPanel();
dialogPanel.setBorder(
BorderFactory.createEmptyBorder(15,15,15,10));
dialogPanel.setLayout(new BorderLayout());
dialogPanel.add(top, BorderLayout.NORTH);
dialogPanel.add(bottom, BorderLayout.SOUTH);
Container cp = dialog.getContentPane();

Panel Attributes

topLeft top topRight
dialogPanel
cp.add(dialogPanel) ;
o dialog.setResizable(false);
You must follow directions! dial 0g. pack () ;
dialog.setLocationRelativeTo(TLDViewer.this);
dialog.show();

bottom

JOptionPane Facade

dialogPanel

topLeft

top topRight

You must follow directions!

bottom

openButton.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent e) {

JoptionPane.showMessageDialog(TLDViewer.this,

"You must follow directions!",
"Error!", JOptionPane.ERROR_MESSAGE);

B

Client

JOptionPane

JPanel

java.awt.Window

ér b

BorderLayout

java.awt.Dialog

BorderFactory

1

JDialog

FileDialog

FlowLayout

Consequences

Shields clients from subsystem components

+ Number of objects that clients deals is reduced
Promotes weak coupling between subsystem and clients
¢ Subsystem components may be strongly coupled

¢ Weak coupling lets you vary the components of the
subsystem without affecting its clients

Eliminates complex or circular dependencies

Can reduce compilation dependencies in large systems

Doesn't prevent applications from using subsystem
classes if they need to

