Code Refactoring

CS356 Object-Oriented Design and Programming

http://cs356.yusun.io
November 21, 2014

-

CAL POLY POMONA

Yu Sun, Ph.D.
http://yusun.io
yusun@csupomona.edu

The Problem: Software Drift

Over many phases of maintenance, structure begins to
decay (entropy)

Begins to resemble Rube Goldberg machine

REPORT OF GUN CAUSES CANNON BALL [D) DROPS
Socrea EROUNDHOG ”é YO RUN ON BULB (£).CAUSING SHIRT SHRINKS,
PULLS INTO HOLE (€')~ ATOMIZER (F) TO SPRAY GENTLY
TRIGGERIA), SHIRT (&) ~ OPENING
SHOOTING 1¢E TONGS ()|
TEE INTO AND
GROUND ALLOWING
AT FAR GOLF
END BALL (T)
OF TO
GUN ~ DRoOP
ON
Teet) !

Software Nature — Software Entropy

+ Software tends to degrade / decay

+ Software rot — like a piece of bad meat

Developers Productivity vs. Time

100

Productivity

o & 5§ & 8

Psychology Reason: Broken Window Theory

Came from city crime
researcher

A broken window will trigger
a building into a smashed and
abandoned derelict

So does the software

Don’ t live with the Broken
window

The Cost of Change

How to Prevent Software from Rotting?

+ Applies OO design principles
¢ Uses design patterns
+ Follows agile practices

¢ Refactoring will reduce the software entropy

What is Refactoring?

“The process of changing a software system in such a way
that it does not alter the external behavior of the code, yet
improves its internal structure” — [Fowler]

“A behavior-preserving source-to-source program
transformation” — [Roberts]

“A change to the system that leaves its behavior unchanged,
but enhances some non-functional quality - simplicity,
flexibility, understandability” — [Beck]

Refactor to Understand

The Obvious

¢ Programs hard to read
Programs hard to understand
¢ Programs hard to modify

¢ Programs with duplicated logic are hard to understand

¢ Programs with complex conditionals are hard to
understand

Refactor to Understand

Refactoring code creates and supports understanding
+ Renaming instance variables helps understanding methods
+ Renaming methods helps understanding responsibility

¢ lterations are necessary

Typical Refactorings

Class Refactorings Method Refactorings Attribute Refactorings
add (sub)class to add method to class add variable to class
hierarchy

rename class rename method rename variable
remove class remove method remove variable

push method down

push variable down

push method up

push variable up

add parameter to method

create accessors

move method to component

abstract variable

extract code in new method

These simple refactorings can be combined to provide bigger restructurings such as the

introduction of design patterns

Example: Add Class

A B A B
< A 7
>IN\ = Elj N
C D F ~ F
C D

Add Class (new name, package, superclasses, subclasses)

+ Preconditions
No class or global variable exists with new name in the same scope
Subclasses are all subclasses of all superclasses

+ Postconditions

New class is added into the hierarchy with superclasses as
superclasses and subclasses as subclasses

New class has name new name

Subclasses inherit from new class and not anymore from
superclasses

Example: Rename Method

Rename Method (hew name, method)

Preconditions

¢+ No method exists with the signature implied by new name
in the inheritance hierarchy that contains method

Postconditions
¢ Method has new name

+ Relevant methods in the inheritance hierarchy have new
name

+ Invocations of changed method are updated to new name

Rename Method: Manual Steps

Do it yourself approach

¢ Check if a method does not exist in the class and
superclass/subclasses with the same “name”

Browse all the implementers (method definitions)
Browse all the senders (method invocations)

Edit and rename all implementers
Edit and rename all senders
Remove all implementers

Test

® & & ¢ o o

Automated refactoring is better!

Refactoring Tools

Based on provable transformations

¢ Build parse tree of programs

¢ Research — mathematical proof that refactoring does not
change semantics; graph transformation

+ Embed refactoring in tool
Speeds up refactoring
+ Extract method: select code, type in method name

In Eclipse for Java and other languages

void goOnVacation() {

..l}é’i'}ﬁ:é' [FSSEEENEE] = getRoadBike():

BEike mountainBike| = getMtnBike () :

loadOnCar L ;mountainBike) ;

}

Refactoring Tool Usage

“Refactoring Tools: Fitness for Purpose” [Murphy-Hill
and Black]

¢ Includes survey of 112 people at the Agile Open
Northwest 2007

¢ On average, when a refactoring tool is available for a
refactoring that programmers want to perform, they
choose to use the tool 68% of the time; the rest of the
time they refactor by hand

Typical Refactorings

Class Refactorings Method Refactorings Attribute Refactorings
add (sub)class to add method to class add variable to class
hierarchy

rename class rename method rename variable
remove class remove method remove variable

push method down

push variable down

push method up

push variable up

add parameter to method

create accessors

move method to component

abstract variable

extract code in new method

These simple refactorings can be combined to provide bigger restructurings such as the

introduction of design patterns

When to Apply Refactoring!?

r

Bad Smells in Code

Duplicated code
Long method
Divergent change
Shotgun surgery
Data clumps
Switch statements

Lazy class

® & 6 6 O O o o

Inappropriate intimacy

/

What is that smell???
Did you write that code?

Duplicated Code

“The #1 bad smell”

if (ldelete(file)) {

String message = "Unable to delete file
+ file.getAbsolutePath();

if (failonerror) {
throw new BuildException(message);

} else {
Tog(message, quiet ? Project.MSG_VERBOSE

: Project.MSG_WARN) ;

if (ldelete(f)) {

String message = "Unable to delete file
+ f.getAbsolutePath();

if (failonerror) {
throw new BuildException(message);

} else {
Tog(message, quiet ? Project.MSG_VERBOSE

: Project.MSG_WARN) ;

if (ldelete(f)) {

String message = "Unable to delete file
+ f.getAbsolutePath();

if (failonerror) {
throw new BuildException(message);

} else {
Tog(message, quiet ? Project.MSG_VERBOSE

: Project.MSG_WARN) ;

if (ldelete(dir)) {

String message = "Unable to delete directory
+ dir.getAbsolutePath();

if (failonerror) {
throw new BuildException(message);

} else {
Tog(message, quiet ? Project.MSG_VERBOSE

: Project.MSG_WARN) ;

Duplicated Code

Same expression in two methods in the same class?

¢ Solution — make it a private ancillary routine and
parameterize it (Extract method)

Same code in two related classes?

¢ Solution — push commonalities into closest mutual ancestor
and parameterize (Pull up method)

Same code in two unrelated classes?
¢ Ought they be related?

Solution — introduce abstract parent (Extract class, Pull up
method)

¢ Does the code really belong to just one class!?
Solution — make the other class into a client (Extract method)

Not All Clones are Harmful

154

Clones Considered Harmful’ Considered
Harmful” [Kapser and Godfrey]
¢ Forking — used to bootstrap development of similar

solutions, with the expectation that evolution of the code
will occur somewhat independently

+ Templating — directly copy behavior of existing code but
appropriate abstraction mechanisms are unavailable

¢ Customization — currently existing code does not
adequately meet a new set of requirements

Long Method

Often a sign of
+ Bad cohesion
¢ Trying to do too many things

+ Poorly thought out abstractions and boundaries

Long Method

Best to think carefully about the major tasks and how
they inter-relate

¢ Solution — break up into smaller private methods within
the class (Extract method)

Fowler’ s heuristic
¢+ When you see a comment, make a method
+ Often, a comment indicates

The next major step

Something non-obvious whose details detract from the clarity
of the routine as a whole.

+ In either case, this is a good spot to “break it up”

Divergent Change

If, over time, you make changes to a class that touch
completely different parts of the class

+ Likely, this class is trying to do too much and contains too
many unrelated subparts

. 11 7
Over time, some classes develop a “God complex

¢ They acquire details/lownership of subparts that rightly
belong elsewhere

This is a sign of poor cohesion
¢ Unrelated elements in the same container

Solution — break it up, reshuffle, reconsider relationships
and responsibilities (Extract class)

Shotgun Surgery

... the opposite of divergent change

+ Each time you want to make a single, seemingly coherent
change, you have to change lots of classes in little ways

Also a classic sign of poor cohesion
+ Related elements are not in the same container!

Solution — look to do some gathering, either in a new or
existing class (Move method/field)

Data Clumps

You see a set of variables that seem to “hang out”
together

+ e.g.,, passed as parameters, changed/accessed at the same
time

Usually, this means that there’s a coherent subobject
just waiting to be recognized and encapsulated

void Scene:: Title (string titleText,
int titleX, int titley,
Colour titleColour){..}

void Scene:: Title (string& titleText,
int& titlex, int& titley,
Colour& titleColour){..}

Data Clumps

In the example, a Title class is dying to be born
If a client knows how to change a title s x, y, text, and

colour, then it knows enough to be able to “roll its
own' Title objects

+ However, this does mean that the client now has to talk to
another class

This will greatly shorten and simplify your parameter lists

(which aids understanding) and makes your class

conceptually simpler too.

Switch Statements

Double getSpeed () {
switch (_type) {
case EUROPEAN:
return getBaseSpeed();
case AFRICAN:
return getBaseSpeed() -
getLoadFactor() * _numCoconuts;
case NORWEGIAN_BLUE:
return (_isNailed) ? 0O
: getBaseSpeed(_voltage);

Switch Statements

This is an example of a lack of understanding
polymorphism and a lack of encapsulation

Solution — redesign as a polymorphic method in a
hierarchy (Replace conditional with polymorphism,
replace type code with subclasses)

Lazy Class

Classes should pull their weight
+ Every additional class increases the complexity of a project

+ If you have a class that isn't doing enough to pay for itself,
can it be collapsed or combined into another class?

If there are several sibling classes that don’t exhibit
polymorphic behavioural differences, then consider just
collapsing them back into the parent and add some
parameters

Often, lazy classes are legacies of ambitious design or a
refactoring that gutted the class of interesting behaviour

Solution — (Collapse hierarchy, Inline class)

Inappropriate Intimacy

Sharing of secrets between classes

+ e.g., public variables, indiscriminate definitions of get/set
methods

Leads to data coupling, intimate knowledge of internal
structures and implementation decisions

Solution

+ Appropriate use of get/set methods

+ Rethink basic abstraction

+ Merge classes if you discover “true love”
4

(Move/extract method/field, Change bidirectional
association to unidirectional, Hide delegate)

Case Study — from Martin
Fowler

Sample Output

Rental Record for Dinsdale Pirhana
Monty Python and the Holy Grail
Ran
Star Trek 27
Star wars 3.2
wallace and Gromit

Amount owed is 20.5

You earned 6 frequent renter points

S W O N W

Class Movie

public class Movie {
public static final int CHILDRENS = 2;
public static final int REGULAR = 0;
public static final int NEW_RELEASE = 1;

private String title;
private int pricecCode;

public Movie(String _title, int _priceCode) {
title = _title;
priceCode = _priceCode;

}

pubTlic int getPriceCode() {
return pricecCode;

}

public void setPriceCode(int arg) {
priceCode = arg;

}

public String getTitle () {
return title;

}
}

Class Rental

public class Rental {
private Movie movie;
private int daysRented;

public Rental(Movie _movie, int _daysRented) {
movie = _movie;
daysRented = _daysRented;

}

public int getbDaysRented() {
return daysRented;

}

public Movie getMovie() {
return movie;

}
}

Class Customer

public class Customer {
private String name;
private Vector rentals = new vector();

public Customer (String _name) {
name = _name;

ks

public void addrRental(Rental arg) {
rentals.addeElement(arg);

ks

public String getName () {

return _name;

// see next slide

Class Customer (continued)

public String statement() {
double totalAmount = 0;
int frequentRenterPoints = 0;
Enumeration rentals = _rentals.elements();
String result = "Rental Record for " + getName() + "\n";
while (rentals.hasMoreElements()) {
Rental each = (Rental) rentals.nextElement();

//determine amounts for each Tine
double thisAmount = 0;
switch (each.getMovie().getPriceCode()) {
case Movie.REGULAR:
thisAmount += 2;
if (each.getbaysRented() > 2)
thisAmount += (each.getDaysRented() - 2) * 1.5;
break;
case Movie.NEW_RELEASE:
thisAmount += each.getDaysRented() * 3;
break;
case Movie.CHILDRENS:
thisAmount += 1.5;
if (each.getDaysRented() > 3)
thisAmount += (each.getbDaysRented() - 3) * 1.5;
break;

}

// see next slide

Class Customer (continued)

// add frequent renter points
frequentRenterPoints ++;

// add bonus for a two day new release rental
if ((each.getMovie().getPriceCode() == Movie.NEW_RELEASE) &&
each.getbDaysRented() > 1) frequentRenterPoints ++;

//show figures for this rental

result += "\t" + each.getMovie().getTitle(+ "\t" +
String.valueof(thisAmount) + "\n";

totalAmount += thisAmount;

}

//add footer lines
result += "Amount owed is + String.valueof(totalAmount) + "\n";

result += "You earned " + String.valueof(frequentRenterpPoints) + " frequent renter points";
return result;

Interactions for Method statement

aCustomer aRental aMovie

statement |

* [for all rentals]

]

getMovie

getPriceCode

getDaysRented

Steps for Extract Method

Create method named after intention of code
Copy extracted code

Look for local variables and parameters

¢ Turn into parameter
¢ Turn into return value

¢ Declare within method
Compile
Replace code fragment with call to new method

Compile and test

Candidate Extraction

public String statement() {
double totalAmount = 0;
int frequentRenterPoints = 0;
Enumeration rentals = _rentals.elements();
String result = "Rental Record for "
while (rentals.hasMoreElements()) {
Rental each = (Rental) rentals.nextElement();

//determine amounts for each Tine
double thisAmount = 0;
switch (each.getMovie().getPriceCode()) {
case Movie.REGULAR:
thisAmount += 2;
if (each.getbaysRented() > 2)

thisAmount += (each.getDaysRented() - 2) *

break;
case Movie.NEW_RELEASE:
thisAmount += each.getDaysRented() * 3;
break;
case Movie.CHILDRENS:
thisAmount += 1.5;
if (each.getbDaysRented() > 3)

thisAmount += (each.getDaysRented() - 3) *

break;

+ getName() + "\n";

1.5;

1.5;

Extracting the Amount Calculation

private double amountFor(Rental each) {
double thisAmount = 0;
switch (each.getMovie().getPriceCode()) {
case Movie.REGULAR:
thisAmount += 2;
if (each.getbaysRented() > 2)
thisAmount += (each.getDaysRented() - 2) * 1.5;
break;
case Movie.NEW_RELEASE:
thisAmount += each.getDaysRented() * 3;
break;
case Movie.CHILDRENS:
thisAmount += 1.5;
if (each.getbDaysRented() > 3)
thisAmount += (each.getDaysRented() - 3) * 1.5;
break;
ks

return thisAmount;

Method statement After Extraction

public String statement() {
double totalAmount = O0;
int frequentRenterPoints = 0;
Enumeration rentals = _rentals.elements();
String result = "Rental Record for " + getName() + "\n";
while (rentals.hasMoreElements()) {
Rental each = (Rental) rentals.nextElement();

thisAmount = amountFor(each);

// add frequent renter points
frequentRenterPoints ++;

// add bonus for a two day new release rental
if ((each.getMovie().getPriceCode() == Movie.NEW_RELEASE) &&
each.getbDaysRented() > 1) frequentRenterPoints ++;

//show figures for this rental

result += "\t" + each.getMovie().getTitle(QQ+ "\t" +
String.valueof(thisAmount) + "\n";

totalAmount += thisAmount;

}

//add footer lines

result += "Amount owed is " + String.valueof(totalAmount) + "\n";
result += "You earned " + String.valueof(frequentRenterPoints) + "
return result;

frequent renter points";

Extracting the Amount Calculation

Is this important?

Is this method in the right place!?

private double amountFor(Rental each) {
double thisAmount = 0;
switch (each.getMovie().getPriceCode()) {
case Movie.REGULAR:
thisAmount += 2;
if (each.getbaysRented() > 2)
thisAmount += (each.getDaysRented() - 2) * 1.5;
break;
case Movie.NEW_RELEASE:
thisAmount += each.getDaysRented() * 3;
break;
case Movie.CHILDRENS:
thisAmount += 1.5;
if (each.getbDaysRented() > 3)
thisAmount += (each.getDaysRented() - 3) * 1.5;
break;
ks

return thisAmount;

}

Change Names of Variables

Should this method really be in the Customer class?

private double amountFor(Rental aRental) {
double result = 0;
switch (aRental.getMovie().getPriceCode()) {
case Movie.REGULAR:
result += 2;
if (aRental.getDaysRented() > 2)
result += (aRental.getDaysRented() - 2) * 1.5;
break;
case Movie.NEW_RELEASE:
result += aRental.getDaysRented() * 3;
break;
case Movie.CHILDRENS:
result += 1.5;
if (aRental.getbDaysRented() > 3)
result += (aRental.getDaysRented() - 3) * 1.5;
break;
}

return result;

}

Move Method

A method is, or will be, using or used by more features
of another class than the class it is defined on

Create a new method with a similar body in the class it
uses most

Either turn the old method into a simple delegation, or
remove it altogether

Class 1 Class 1
aMethod()
Class 2 Class 2

aMethod()

Steps for Move method

Declare method in target class
Copy and fit code
Set up a reference from the source object to the target

Turn the original method into a delegating method
+ amountFor(Rental aRental) {return aRental.getCharge();}

¢ Check for overriding methods
Compile and test

Find all users of the method

+ Adjust them to call method on target
Remove original method

Compile and test

Moving Method amount to Rental

public class Rental {

public double getCharge() {
double result = 0;
switch (getMovie().getPriceCode()) {
case Movie.REGULAR:
result += 2;
if (getbDaysRented() > 2)
result += (getDaysRented() - 2) * 1.5;
break;
case Movie.NEW_RELEASE:
result += getDaysRented() * 3;
break;
case Movie.CHILDRENS:
result += 1.5;
if (getDaysRented() > 3)
result += (getDaysRented() - 3) * 1.5;

break;

}

return result;

}
1 Rental Customer
Movie *
< daysRented: int <
priceCode: int (Charge() statement()
getCharge

Altered statement

public String statement() {
double totalAmount = 0;
int frequentRenterPoints = 0;
Enumeration rentals = _rentals.elements();
String result = "Rental Record for " + getName() + "\n";
while (rentals.hasMoreeElements()) {
double thisAmount = 0;
Rental each = (Rental) rentals.nextElement();

thisAmount = each.getCharge();

// add frequent renter points

frequentRenterPoints ++;

// add bonus for a two day new release rental

if ((each.getMovie().getPriceCode() == Movie.NEW_RELEASE) &&
each.getbaysRented() > 1) frequentRenterPoints ++;

//show figures for this rental
result += "\t" + each.getMovie().getTitle(+ "\t" + String.valueof(thisAmount) + "\n";
totalAmount += thisAmount;

// add footer Tines

result += "Amount owed is " + String.valueof(totalAmount) + "\n";
result += "You earned " + String.valueof(frequentRenterpPoints) + " frequent renter points";
return result;

Replace Conditional With Polymorphism

You have a conditional that chooses different behavior depending on the type of an object
Move each leg of the conditional to an overriding method in a subclass
Make the original method abstract

douH e getSpeed() {
switch (_type) {
case EWRCPEAN
return get BaseSpeed();
case AFRICAN:
return get BaseSpeed() - getLoadFactor() * _nunberOfCoconut s;
case NCRVEIGIAN H.UE:
return (_isNailed) ? 0 : get BaseSpeed(_vd tage);
}
throw rew Rurt i neExcepti on ("Shou d be urreachable");

s

Bird

getSpeed

European African Norweigian Blue

getSpeed getSpeed getSpeed

Steps for Replace Conditional with Polymorphism

Move switch to superclass of inheritance structure
Copy one leg of case statement into subclass
Compile and test

Repeat for all other legs

Replace case statement with abstract method

Move getCharge to Price

public class Movie...
public double getCharge(int daysRented) {
return _price.getCharge(daysRented);
ks

public class Price...
public double getCharge(int daysRented) {
double result = 0;
switch (getPriceCode()) {
case Movie.REGULAR:
result += 2;
if (daysRented > 2)
result += (daysRented - 2) * 1.5;
break;
case Movie.NEW_RELEASE:
result += daysRented * 3;
break;
case Movie.CHILDRENS:
result += 1.5;
if (daysRented > 3)
result += (daysRented - 3) * 1.5;
break;
}

return result;

Override getCharge in the subclasses

Class Price...
abstract public double getCharge(int daysRented);

Class RegularpPrice...
public double getCharge(int daysRented){
double result = 2;
if (daysRented > 2)
result += (daysRented - 2) * 1.5;
return result;

}

Class childrensPrice...
public double getCharge(int daysRented){
double result = 1.5; Do each leg one at a time then...
if (daysRented > 3)
result += (daysRented - 3) * 1.5;
return result;

}

Class NewReleasePrice...
pubTlic double getCharge(int daysRented) {
return daysRented * 3;

}

Obstacles to Refactoring

Complexity

+ Changing design is hard

¢ Understanding code is hard

Possibility to introduce errors

+ Run tests if possible

¢ Build tests

Clean first, then add new functionality
Cultural Issues

¢ Producing negative lines of code, what an idea!
+ “We pay you to add new features, not to improve the code!”
If it ain’ t broke, don’ t fix it

+ “We do not have a problem, this is our software!”

Obstacles to Refactoring

Performance
+ Refactoring may slow down the execution

+ The secret to writing fast software
“Write tunable software first then tune it

Typically only 10% of your system consumes 90% of the
resources so just focus on 10 %

+ Refactorings help to localize the part that need change
+ Refactorings help to concentrate the optimizations
Development is always under time pressure

+ Refactoring takes time

+ Refactoring better right after a software release

Conclusion: Know-when & Know-how

11 7” . . 11 b4
Know when " is as important as ~ know-how
13 b4
Use code smells™ as symptoms

Rule of the thumb
+ “Once and Only Once” (Kent Beck)

A thing stated more than once implies refactoring

