Anti-Patterns

CS356 Object-Oriented Design and Programming
http://cs356.yusun.io
December |, 2014

Yu Sun, Ph.D.

http://yusun.io

yusun@csupomona.edu CAL POLY POMONA

Recap: Refactoring

Improve the structure of code

¢ No value gain at the moment, but
o Easier to add features later ﬁﬁkzk

¢ Less chances of errors in maintenance tasks Refactoring

Key is to preserve semantics (behavior)

¢ Imprecisely ensure by developing tests
+ Also, by code inspection

Often automated support for common refactorings
+ Automated support, less error prone

+ Often most general case
e.g. Eclipse extract method makes all variables parameters

¢ Limitation of current program analysis techniques

Anti-Patterns

TO ENGINEER
[S HUMAN

The Role of Failure in ssful Design

e and always literate”
Los Angeles Times
Author of THE EVOLUTION OF USEFUL THINGS

Lessons Learned
from failures
and their remedies

AntiPatterns: Vaccinations
against Object
Misuse” [Akroyd 96]

Example: Spaghetti Code

+ An undocumented piece of source code

¢ Cannot be extended or modified

+ Reason: convoluted structure

+ Effect: significant cost in modification

Spaghetti Code: Symptoms

Quick demonstration code integrated in the running system
Obsolete or scanty documentation
50% time spent learning what the code does

“Hesitant programmer syndrome”
¢ Perhaps easier to rewrite this code
+ More likely to break it than extend it

Cannot be reused

+ Cannot change the used library/components
+ Cannot optimize performance

Duplication

¢ “l don’ t know what that piece of code was doing, so | rewrote what |
thought should happen, but | cannot remove the redundant code
because it breaks the system.”

Symptoms in an OO program

Many OO method with no parameters
Suspicious class or global variable
Strange relationships between classes

Process-oriented methods

+ Objects with process-oriented names
OO advantage lost

+ Inheritance cannot be used to extend

¢ Polymorphism cannot be used

Spaghetti Code: Symptoms

TL're ONMLyY VACId] MEASURE Men/ T

OF Code QMAL.(T'\[.' WIFS/miMMT—C

N, o
WiF wIE s EAS
A
/ E—
A R w/

f A o
code W E cocle w %
REeView |~ revView Pp -

] ‘ J/’/
coma -y
L J) //

=

(c) 2008 Focus Shift

Solution

e Refactor to generalize: Create an abstract superciass

1. Make subclass function signatures compatible
2. Add function signatures to the superclass

3. Make function bodies and variables compatible
4 Migrate common code to the superclass

e Refactor to specialize: Simpiify conditionals

1. Foreach condition, create a subclass with matching invariant
2. Copy the code into the subclass

3. Simplify code based upon invariant

4. Specialize the superclass constructor

e Refactor to combine: Capture aggregations and components

Type A. Move members from an aggregate class to a components class
Type B. Move members from component classes to aggregate class
Type C. Convert inheritance into an aggregation

Root Cause of Anti-Patterns: Haste

Look you --
Just "clean up" the code.
We ship tomorrow.

Root Cause of Anti-Patterns: Apathy

L/—'\,-—\’f"*‘vl

L

g Reusa? Reuse!! Tx
Who's ever gonna reuse \
this crappy code?

NO ONE! That's who.

%A”\
.

J
N AAN AN

Root Cause of Anti-Patterns: Narrow-Mindedness

| don't need to know. ..
and .
| don’t care 1o know!

Root Cause of Anti-Patterns: Sloth

Root Cause of Anti-Patterns: Avarice

Well,.. It certainly is
complicated! |I'm sure cur clients

will be very, very impressad!

Root Cause of Anti-Patterns: Ignorance

S
Look, Roy... | don’t really

have time to actually read
thes...
Could you put together a

one-page Executive AT
o~ Summary.. - Dummy...~

Root Cause of Anti-Patterns: Pride

ATTENTION!
NEW CONBANY MOTIO..

TERODEFEICS

X

Another Anti Pattern: The BLOB

+ Also known as L 3&—9
+ Winnebago and the God class

¢ Scale: Entire application

+ General Form:
+ One class monopolizes the processing

o Other classes are data classes

The Design of an Example Blob

Symptoms of a Blob

+ Single Class
¢ Large number of attributes
¢ Large number of operations

¢ Unrelated attributes and operations
¢ Opverall lack of cohesiveness

¢+ Too complex to reuse and test

+ Expensive to load into memory

Refactored Solution

|dentify or categorize related things
+ Attributes, Operations
Where do these categories naturally belong?

+ Apply move method, move field refactorings

Remove redundant associations

unction strin
lue ear (
e = -f gyearValue / (&)
§ we) " \ // """""" 8 e oun
Y / . N
4//// /, .
y g
s L te).Year
3] -
\ m n

(gLl mLLRT £ ! t
Process-Stufsf ...

Categories in Example Application

Migration in Example Application

Migration in Example Application

e
for Counphiyg

Why Study Anti-Patterns?

Provide a method of efficiently mapping a general situation to
a specific class of solutions

Provide real world experience in recognizing recurring
problems in the software industry

Provide a common vocabulary for identifying problems and
discussing solutions

The Reference Model

Design Patterns AntiPatterns
Problem + Solution Pairs Solidion + Solution Pairs
Problem

Solution

Related Patterns

Related Patterns & AntiPatterns

Anti-Patterns

Describes:
¢ Commonly occurring solution to a problem

+ Solution often leads to negative consequences

Results from ignorance, lack of experience, applying
good patterns to wrong context, etc.

Purpose of cataloguing:
+ Recognize

+ Remedy, often by refactoring

Describing an Anti-Pattern

General Form

Symptoms to recognize general form
+ How to identify

Example: One big class, a lot unrelated methods

Example: Many methods with no arguments

Causes that lead to the general form
¢ lack of design experience
Refactored solution:

+ How to change into a healthier solution
Split into smaller classes

|dentify or categorize attributes and operations

Anti-Pattern: Lava Flow

Also Known As: Dead Code

Scale: Application

Refactored Solution Name: Architectural Configuration
Management

Refactored Solution Type: Process
Root Causes: Avarice, Greed, Sloth

Unbalanced Forces: Management of Functionality, Performance,
Complexity

Anecdotal Evidence: “Oh that! Well Ray and Emil (they re no
longer with the company) wrote that routine back when Jim (who
left last month) was trying a workaround for lIrene s input
processing code (she’s in another department now, too). | don’ t
think it's used anywhere now, but I’'m not really sure. Irene
didn’ t really document it very clearly, so we figured we would
just leave well enough alone for now. After all, the bloomin’ thing
works doesn’ t it?!”

Anti-Pattern: Lava Flow

Projectstared

DDE Leue@ged

y

Lead Exgheer k1.

New Lead iad "beter

approach, bitre vors

abortde ke thgstary
utl ke was more .
wmilarwis the code .

Oops, DDE 10 bage s
sippored - bitsae the
code, we'llvge toro LE1

Swppotbrlaai i

0 1f This class was whttenb ¥ someore earhier (Alex?) to manage the

8 i indexing orsomethng (maybe). Ifs probably inportarnt.
i
§ [#eedD0) NOT DELETE etk

i

I T don't fhunk this 15 used arpwrhere - at least not m the newr
'0 I Mamro_Irdexcer module wlich may ac hally replace whatever
I s wras used for, but I’m not sure, so it’s best to just leave #t

Il here forvowr... (JP.- 4/89)
lass Inde xFrame exends Frame

~-

Il IndexFrame carstmetor
i,
pablic IndexFrame(S ting index_parameter 1)
{

/il Note: need to add additional staffhere...
super (stx);

OO T XIS

Symptoms of Lava Flow

¢ Frequent unjustifiable variables and code fragments

¢+ Undocumented complex code segments
+ important-looking functions, classes,
+ These segments don't clearly relate to the system architecture.

+ Very loose, “evolving” system architecture

+ Whole blocks of commented-out code with no explanation or
documentation

+ Lots of “in flux” or “to be replaced” code areas

Symptoms of Lava Flow

Unused (dead) code, just left in.
Unused, inexplicable, or obsolete interfaces

If existing Lava Flow code is not removed, it can continue to
proliferate as code is reused in other areas.

If the process that leads to Lava Flow is not checked, there
can be exponential growth as succeeding developers, too
rushed or intimidated to analyze the original flows, continue
to produce new, secondary flows as they try to work around
the original ones, this compounds the problem.

As the flows compound and harden, it rapidly becomes impossible
to document the code or understand its architecture enough to
make improvements.

Cause

R&D code placed into production

Uncontrolled distribution of unfinished code. Implementation
of several trial approaches toward implementing some
functionality. Often single-developer (lone wolf) written code.

Lack of architecture

Repetitive development process
¢ Goals not clear
¢ Design decisions not hidden
Rework, backtrack, and develop prototypes
+ Hasty changes, no refactoring

Too costly to analyze the existing code base

Functional Decomposition

Also Known As: No Object-Oriented AntiPattern
“No OO” [Akroyd 96]

Most Frequent Scale: Application

Refactored Solution Name: Object-Oriented
Reengineering

Refactored Solution Type: Process
Root Causes: Avarice, Greed, Sloth

Unbalanced Forces: Management of Complexity,
Change

Anecdotal Evidence: “This is our ‘main’ routine,
here in the class called LISTENER.”

Example
Functional

Change Financial Status

Calculate
Add Customer '—> Calculate Loan '—b Eﬂ'"‘*"t
Schedule

Upd.ale Address Lalculme Interest
Aber Paymaent
Schedule
Customer Loan
Change Financial Status Calculate Loan
Customer
Add Customer Loan Calculate Interest
Update Address

Customer Payment Loan Payment OPJ eCt-
/ oriented

Payment
Calkculale Payment Schedule

Alter Payment Schedule

Boat Anchor

Piece of software or hardware that serves no useful purpose
on the current project

Often a costly acquisition, which makes the purchase even
more ironic

At acquisition pitch to “decision makers”
No technical evaluation of the product
Significant effort to make it work
After efforts found to be useless

Boat Anchor

$12.5 Billion

Google
4 O

MOTOROLA

US $2.91 Billion Deal

lenovo

Golden Hammer

| have a hammer and everything is a nail

GOLDEN | l/\MMLl\

Stand back! | have just the tool to solve this

Yo-yo Problem

A programmer has to read and understand a program
whose inheritance graph is so long and complicated that
the programmer has to keep flipping between many
different class definitions in order to follow the control
flow of the program

For More Anti-Patterns

¢ http://en.wikipedia.org/wiki/Anti-pattern

